首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
This study investigates the biological significance of carotenoid oxidation products using inhibition of Na+-K+-ATPase activity as an index. β-Carotene was completely oxidized by hypochlorous acid and the oxidation products were analyzed by capillary gasliquid chromatography and high performance liquid chromatography. The Na+-K+-ATPase activity was assayed in the presence of these oxidized carotenoids and was rapidly and potently inhibited. This was demonstrated for a mixture of β-carotene oxidative breakdown products, β-Apo-10′-carotenal and retinal. Most of the β-carotene oxidation products were identified as aldehydic. The concentration of the oxidized carotenoid mixture that inhibited Na+-K+-ATPase activity by 50% (IC50) was equivalent to 10μM non-degraded β-carotene, whereas the IC50 for 4-hydroxy-2-nonenal, a major lipid peroxidation product, was 120 μM. Carotenoid oxidation products are more potent inhibitors of Na+-K+-ATPase than 4-hydroxy-2-nonenal. Enzyme activity was only partially restored with hydroxylamine and/or β-mercaptoethanol. Thus, in vitro binding of carotenoid oxidation products results in strong enzyme inhibition. These data indicate the potential toxicity of oxidative carotenoid metabolites and their activity on key enzyme regulators and signal modulators.  相似文献   

2.
Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 μM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/γ subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, d-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or d-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of γ subunit or GLAST. In order to elucidate the roles of γ subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures γ subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of γ subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of γ subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of γ subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/γ subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of γ subunit on the kinetic parameters of catalytic subunit(s) of Na+, K+-ATPase.  相似文献   

3.
We examined the mechanism through which leptin increases Na+, K+-ATPase activity in the rat kidney. Leptin was infused under anaesthesia into the abdominal aorta proximally to the renal arteries and then Na+, K+-ATPase activity was measured in the renal cortex and medulla. Leptin (1 μg/kg min) increased Na+, K+-ATPase activity after 3 h of infusion, which was accompanied by the increase in urinary H2O2 excretion and phosphorylation level of extracellular signal regulated kinase (ERK). The effect of leptin on ERK and Na+, K+-ATPase was abolished by catalase, specific inhibitors of epidermal growth factor (EGF) receptor, AG1478 and PD158780, as well as by ERK inhibitor, PD98059, and was mimicked by both exogenous H2O2 and EGF. The effect of leptin was also prevented by the inhibitor of Src tyrosine kinase, PP2. Leptin and H2O2 increased Src phosphorylation at Tyr418. We conclude that leptin-induced stimulation of renal Na+, K+-ATPase involves H2O2 generation, Src kinase, transactivation of the EGF receptor, and stimulation of ERK.  相似文献   

4.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger.  相似文献   

5.
The purpose of the present study was to characterize the transport of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) into hepatocytes at physiological and pharmacological concentrations. Hepatocytes were isolated from female Sprague-Dawley rats by collagenase perfusion. Uptake of [3H]DHEA and [3H]DHEAS at increasing concentrations (3.5 nM-100 μM) was measured by the rapid filtration technique at 30 s intervals up to 120 s. The uptake of DHEAS by hepatocytes was saturable (Km = 17.0 μM; Vmax = 3.7 nmol/min/mg cell protein). In contrast, a specific saturable transport system for DHEA could not be detected in rat hepatocytes. It is suggested that DHEA enters the cell by diffusion. The uptake of DHEAS could be inhibited by antimycin A, carbonylcyanide-m-chlorophenylhydrazone, and dinitrophenol (inhibitors of the mitochondrial respiratory chain), by dinitrofluorobenzene and p-hydroxymercuribenzoate (NH2- and SH-blockers, respectively), and by monensin (Na+-specific ionophore). No inhibition was seen in the presence of ouabain (inhibitor of Na+-K+-ATPase) and phalloidin (inhibitor of cholate transport and actin-blocker). Interestingly, DHEAS uptake was inhibited by bile acids (cholate, taurocholate and glycocholate). Conversely, [3H]cholate uptake was strongly inhibited by DHEAS, which indicates a competition for the same carrier. Replacement of sodium ion with choline markedly decreased uptake velocity at pharmacological DHEAS concentrations. The results suggest that DHEAS uptake is a saturable, energy-dependent, carrier-mediated, partially Na+-dependent process, and that DHEAS may be taken up via the multispecific bile acid transport system.  相似文献   

6.
Recently, we demonstrated that angiotensin-(1–7) (Ang-(1–7)) stimulates the Na+-ATPase activity through a losartan-sensitive angiotensin receptor, whereas bradykinin inhibits the enzyme activity through the B2 receptor [Regul. Pept. 91 (2000) 45; Pharmacol. Rev. 32 (1980) 1]. In the present paper, the effect of bradykinin (BK) on Ang-(1–7)-stimulated Na+-ATPase activity was evaluated. Preincubation of Na+-ATPase with 10−9 M Ang-(1–7) increases enzyme activity from 7.9±0.9 to 14.1±1.5 nmol Pi mg−1 min−1, corresponding to an increase of 79% (p<0.05). This effect is reverted by bradykinin in a dose-dependent manner (10−14–10−8 M), reaching maximal inhibitory effect at 10−9 M. Des-Arg9 bradykinin (DABK), an agonist of B1 receptor, at the concentrations of 10−9–10−7 M, does not mimic the BK inhibitory effect, and des-Arg9-[Leu8]-BK (DALBK), a B1 receptor antagonist, at the concentrations of 10−10–10−7 M, does not prevent the inhibitory effect of BK on Ang-(1–7)-stimulated enzyme. On the other hand, HOE 140, an antagonist of B2 receptor, abolishes the inhibitory effect of BK on the Ang-(1–7)-stimulated enzyme in a dose-dependent manner, reaching maximal effect at 10−7 M. Taken together, these data indicate that stimulation of B2 receptors by BK can counteract the stimulatory effect of Ang-(1–7) on the proximal tubule Na+-ATPase activity.  相似文献   

7.
Esenbeckia febrifuga (Rutaceae) is a plant traditionally used to treat malaria in the Brazilian Amazon region. Ethanol extract of stems displayed a good antiplasmodial activity against Plasmodium falciparum strains W-2 (IC50 15.5±0.71 μg/ml) and 3 D7 (IC50 21.0±1.4 μg/ml). Two coumarins (bergaptene 1 and isopimpinellin 2), five alkaloids (flindersiamine 3, kokusaginine 4, skimmiamine 5, γ-fagarine 6 and 1-hydroxy-3-methoxy-N-methylacridone, 7), besides a limonoid (rutaevine 8), have been isolated for the first time from this species. Antiplasmodial activity of compounds 3, 5–8 has been evaluated in vitro against P. falciparum strains (W-2 and 3D7) and the furoquinolines 5 and 6 were the most potent displaying IC50 values <50 μg/ml; flindersiamine (3) showed a weak activity while alkaloid 7 and rutaevine (8) were inactive (IC50>100 μg/ml).  相似文献   

8.
The influence of hyperbaric oxygen (HBO) treatment on the activities of superoxide dismutase (SOD) and Na+,K+-ATPase was determined during different time periods of reperfusion in rats exposed to global cerebral ischemia. Ischemic animals were either sacrificed or exposed to the first HBO treatment 2, 24, 48 or 168 h after ischemic insult (for SOD activities measurement) or immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+-ATPase activities measurement). Hyperbaric oxygenation procedure was repeated for seven consecutive days. The results of presented experiments demonstrated the statistically significant increase in the hippocampal SOD activity 24 and 48 h after global cerebral ischemia followed by a decrease in the enzymatic activity 168 h after ischemic insult. In the ischemic rats treated with HBO the level of hippocampal SOD activity was significantly higher after 168 h of reperfusion in comparison to the ischemic, non HBO-treated animals. In addition, it was found that global cerebral ischemia induced a statistically significant decrease of the hippocampal Na+,K+-ATPase activity starting from 1 to 168 h of reperfusion. Maximal enzymatic inhibition was obtained 24 h after the ischemic damage. Decline in Na+,K+-ATPase activity was prevented in the animals exposed to HBO treatment within the first 24 h of reperfusion. Our results suggest that global cerebral ischemia induces significant alterations in the hippocampal SOD and Na+,K+-ATPase activities during different periods of reperfusion. Enhanced SOD activity and preserved Na+,K+-ATPase activity within particular periods of reperfusion, could be indicators of a possible benefitial role of HBO treatment in severe brain ischemia.  相似文献   

9.
Changes in plasmalemma K+Mg2+-ATPase dephosphorylating activity and H+ transport were examined in freezing-tolerant and non-tolerant genotypes of the perennial grass species Festuca pratensis Huds. Enzyme activity and ΔμH+ were measured in plasmalemma fractions isolated from basal nodes and roots. Three types of experiments were undertaken: (i) a field experiment, utilizing the seasonal growth and cessation cycle of a perennial plant; (ii) a cold acclimation experiment in hydroponics; and (iii) an instant freezing test. A specific fluctuation in K+Mg2+-ATPase activity was found throughout the seasonal growth of the plants (i). The K+Mg2+-ATPase activity peaks for both the basal node and the root plasmalemma were determined early in the spring before the renewal of growth. The lowest activity values in roots occurred at the time approaching flowering, and in basal nodes at the transition into the growth cessation. The K+Mg2+-ATPase activity was approximately 50% lower in the basal node plasmalemma of freezing-tolerant plants than of non-tolerant ones, when assessed at the optimal growth stage in hydroponics. In hydroponics (ii) and in the freezing test (iii), temperature stress was followed by a more pronounced change in the level of K+Mg2+-ATPase activity than in that of H+ transport, and this change was more clearly differentiated in the basal node plasmalemma of contrasting genotypes than in the roots. Stress response was manifested differently in freezing-tolerant and non-tolerant plants at cold acclimation (4–2 °C) and at freezing (−8 °C) temperatures. Proton transport regulation via coupled changes in the hydrolysed ATP/transported proton ratio, as an attribute of freezing-tolerant plants, is discussed.  相似文献   

10.
Pyruvate is a well-known scavenger of hydrogen peroxide (H2O2). In addition, it scavenges superoxide radical (O2). However, evidence on its intracellular antioxi-dant function is meager at present. Hence, we have examined the effectivekiess of this metabolite and its ethyl ester against intracellular oxidative damage to the lens under organ culture. Menadione, a redoxcycling quinone, was used to generate the reactive oxygen species (ROS). It was found to inhibit lens metabolism as evidenced by a decrease of ATP. Additionally, tissue oxidation was apparent by loss of glutathione (GSH), and increase in the level of oxidized glutathione (GSSG), coupled with increase of the urea soluble proteins (water insoluble). The overall physiological damage was apparent by the inhibition of the Na+-K+-ATPase dependent cation pump, as evidenced by a decreased rubidium transport. These deleterious effects were attenuated by pyruvate and ethyl-pyruvate. The later was found to be more effective.  相似文献   

11.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

12.
目的:探讨钠泵活性改变及内质网应激(ERS)在大鼠离体心脏再灌损伤中的作用及其机制。方法:将60只雄性SD大鼠随机分为6组(n=10):正常对照组(NC组)、缺血/再灌损伤组(I/R组)、哇巴因-缺血/再灌损伤组(OUA-I/R组)、地高辛抗血清-缺血/再灌损伤组(Anti-Dig-I/R组)、Src抑制剂PP2-哇巴因-缺血/再灌损伤组(PP2-OUA-I/R组)、PLC抑制剂U73122-哇巴因-缺血/再灌损伤组(U73122-OUA-I/R组)。建立全心缺血30 min,再灌注120min的Langendorff大鼠离体心脏缺血再灌损伤模型。检测各组相同时间点心功能恢复率、冠脉流出液中乳酸脱氢酶(LDH)和肌酸激酶(CK)活性,心肌中Na+-K+-ATP酶活性和钙离子水平。流式细胞仪检测心肌细胞凋亡率,Western blot检测心肌钠泵α1亚基、葡萄糖调节蛋白78(GRP78)、C/EBP同源蛋白(CHOP)及凋亡蛋白Bcl-2/Bax的表达。结果:与I/R组相比,给予哇巴因预处理可使心功能恢复率明显下降,心肌酶漏出增多,Na+-K+-ATP酶的活性降低,心肌细胞内钙水平升高,细胞凋亡率增多,心肌钠泵α1亚基和Bcl-2表达降低,GRP78、CHOP和Bax表达升高;而Anti-Dig-I/R组与I/R组相比各指标均明显改善;给予Src抑制剂PP2或PLC抑制剂U73122后,哇巴因对心肌的损伤作用被部分阻断,表现为心功能恢复率升高,心肌酶漏出减少,Na+-K+-ATP酶的活性明显恢复,Ca2+水平下降,细胞凋亡率下降,心肌钠泵α1亚基和Bcl-2表达增多,GRP78和Bax表达减少。结论:钠泵功能改变和内质网应激共同参与大鼠离体心脏缺血再灌损伤,钠泵通路(Src和PLC)介导内质网应激是引起大鼠离体心脏缺血再灌损伤细胞凋亡机制之一。  相似文献   

13.
In the present paper, the modulation of the basolateral membrane (BLM) Na+-ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1–7) (Ang-(1–7)) was evaluated. Ang II and Ang-(1–7) inhibit the Na+-ATPase activity in a dose-dependent manner (from 10−11 to 10−5 M), with maximal effect obtained at 10−7 M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1–7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10−8 M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10−12–10−5 M) losartan or (10−10–10−7 M) A779, selective antagonists for AT1 and AT(1–7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3′,5′-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10−9 M guanosine 5′-O-(2-thiodiphosphate) (GDPβS; an inhibitor of the G protein activity), and mimicked by 10−10 M guanosine 5′-O-(3-thiotriphosphate) (GTPγS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10−10–10−6 M) cAMP has a similar and non-additive effect to Ang II and Ang-(1–7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1–7); and (6) both angiotensins stimulate PKA activity.  相似文献   

14.
The cytologically active secondary lipid peroxidation products, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) have been detected as their2, 4-dinitro-phenylhydrazone (DNP) derivatives in plant tissue cultures using LC-MS. This paper reports, for the first time, the use of LC-MS methodology to definitively identify 4-hydroxy-2-nonenal in plants. Limits of detection for the two derivatives are approximately 5pmol (1.2 × 10-9g; 1μM) and O.1pmol (3 × 10-l1g; 20nM) respectively. Mass spectrometer response was linear in the range from 2-200μM DNP-MDA and 0.02-10μM DNP-HNE.

This methodology has been used to assess the formation of aldehydic secondary lipid peroxidation products in dedifferentiated callus cultures of Daucus carota. The finding that profiles of MDA and HNE can be correlated with embryogenic competence is of considerable interest as oxidative status has already been implicated as a regulatory factor in animal development.  相似文献   

15.
16.
Three tricyclic guanidine alkaloids, including 1,8a;8b,3a-didehydro-8β-hydroxyptilocaulin (1), 1,8a;8b,3a-didehydro-8-hydroxyptilocaulin (2) and mirabilin B (3), were identified from the marine sponge Monanchora unguifera. 1,8a;8b,3a-Didehydro-8-hydroxyptilocaulin (2) is a new stereoisomer of 1, the structure of which was elucidated by spectroscopic analysis, comparison of its spectral data with those of 1, and confirmed by X-ray analysis. Compounds 1 and 2 co-crystallized in an unusual perfect order and packed around an approximate inversion center. A mixture of 1 and 2 is active against the malaria parasite Plasmodium falciparum with an IC50 value of 3.8 μg/mL while mirabilin B (3) exhibited antifungal activity against Cryptococcus neoformans with an IC50 value of 7.0 μg/mL and antiprotozoal activity against Leishmania donovani with an IC50 value of 17 μg/mL.  相似文献   

17.
A cellular suspension from rat submandibular glands was prepared with collagenase. The intracellular pH (pHi) was estimated with 2′,7′-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein (BCECF). After exposure to NH4Cl, the pHi transiently increased (diffusion of NH3) and then dropped (influx of NH4+). Isoproterenol increased 2.5-fold the rate of NH4+ influx; bumetanide, an inhibitor of the Na+-K+-2Cl-cotransporter blocked the response to isoproterenol, confirming that the beta-adrenergic agonist stimulated the cotransporter. Forskolin (1 μmol/L) mimicked the response to isoproterenol. VIP (1 nmol/L-1 μmol/L) also increased the activity of the cotransporter. Cyclic AMP rather than calcium was the mediator of this activation since 1) carbachol which increased the [Ca2+]i fivefold increased the uptake of NH4+ by only 50%; 2) only high concentrations of VIP significantly increased the [Ca2+]i; 3) incubation in the presence of EGTA had no effect on the response to VIP; 4) low concentrations (nmol/L) of the neuropeptide increased the intracellular level of cAMP; and 5) the stimulation of the cotransporter by VIP, forskolin, and isoproterenol was inhibited by H8, an inhibitor of cAMP-dependent protein kinase. It is concluded that the Na+-K+-2Cl-cotransporter of rat submandibular glands is activated by isoproterenol, forskolin, and neuropeptides of the VIP family by a mechanism involving cAMP-dependent processes. The activation of the cotransporter by VIP could partly explain the potentiating effect of VIP on the response to sialagogues like substance P or muscarinic agonists.1  相似文献   

18.
Anti-allergic substances from the rhizomes of Dioscorea membranacea   总被引:2,自引:0,他引:2  
Extracts of five species of Thai medicinal plants, locally known as Hua-Khao-Yen, were screened for anti-allergic activities using RBL-2H3 cells. Of the five species studied, the ethanolic extract of Dioscorea membranacea exhibited potent inhibitory activity against β-hexosaminidase release as a marker of degranulation in RBL-2H3 cells, with an IC50 value of 37.5 μg/mL. Eight compounds were isolated from this crude ethanolic extract, [two naphthofuranoxepins (1, 2), one phenanthraquinone (3), three steroids (4–6), and two steroidal saponins (7, 8)], and tested for their anti-allergic activities. The results showed that dioscorealide B (2) possessed the highest activity with an IC50 value of 5.7 μM, followed by dioscoreanone (3, IC50 = 7.7 μM), dioscorealide A (1, IC50 = 27.9 μM), and diosgenin (9, IC50 = 29.9 μM). Structure–activity relationship studies of naphthofuranoxepins on anti-allergic activity revealed that the hydroxylation at position 8 conferred higher activity than methoxylation. For diosgenin derivatives, the aglycone was found to possess higher activity than the diglucosylated molecule; whereas substitution with rhamnoglucosides apparently results in loss of activity. Furthermore, effects of dioscorealide A, dioscorealide B, and dioscoreanone on antigen-induced release of TNF- and IL-4 in the late phase reaction were also examined.  相似文献   

19.

1. 1. (Mg2+ + Ca2+) ATPases of microsomal and synaptic membrane preparations from immature and adult rat brain were activated by calcium (0.1–10 μM), maximal activation was found at 3 μM. The increase in (Mg2+ + Ca2+) ATPase seen during development was greatest in the synaptic membrane preparations.

2. 2. At 37°C both Na+ or K+ at concentrations higher than 30 mM inhibited the microsomal Mg2+ ATPase, but the (Mg2+ + Ca2+) ATPase was stimulated by both Na+ and K+. Synaptic membrane Mg2+ ATPase was inhibited by concentrations higher than 100 mM K+; Na+ however stimulated this enzyme at all concentrations. Much of this Na+ stimulated activity was ouabain sensitive. Synaptic membrane (Mg2+ + Ca2+) ATPase was stimulated by Na+ or K+, this stimulation follows approximate saturation kinetics with an apparent Km of 18.8 mM Na+ or K+.

3. 3. Arrhenius plots of microsomal (Mg2+ + Ca2+) ATPase were curvilinear, but two intersecting lines with a break at 20°C could be fitted. The calculated energies of activation from these lines were very similar in immature and adult preparations. The synaptic membrane preparation (adult) also gave a curvilinear plot; but two intersecting lines with a break at 25°C could be fitted to the data. These lines had slopes of 21 and 28 Kcal mole−1 above and below the break, respectively. The immature preparation when made using EDTA gave a Arrhenius plot of very similar form to the adult preparation. Without EDTA however the Arrhenius plot was complex with a plateau at 25–32°C. Pretreatment with EDTA activated the synaptic membrane (Mg2+ + Ca2+) ATPase from both immature and adult brain.

Author Keywords: Brain; ATPase; temperature; development; synaptic membranes  相似文献   


20.
Adil E. Shamoo 《BBA》1971,226(2):285-296
The (Na+ + K+)-stimulated Mg2+-ATPase, but not the Mg2+-ATPase, is irreversibly inhibited when turtle bladder microsomes were incubated with hydroxylamine.

The Mg2+-dependent or the (Mg2+ + Na+)-dependent phosphorylation of ADP by the phospho-protein (the exchange reaction) is reversibly inhibited when the microsomes are incubated with hydroxylamine.

The Na+-induced increment of 32P-labelling of microsomes previously incubated with [λ-32P]ATP is completely eliminated by hydroxylamine, but the Mg2+-dependent 32P-labelling of such microsomes is unaffected by hydroxylamine.

It is concluded that the phospho-enzyme formed during the Mg2+-dependent hydrolysis does not contribute to the Mg2+-dependent exchange reaction. Instead, the phosphoenzyme formed during the (Na+ + K+)-stimulated hydrolysis is apparently the only substance which phosphorylates ADP in the exchange reaction, even in the absence of Na+ and/or K+.

The hydroxylamine-sensitive nature of the sodium form of the phospho-enzyme in the (Na+ + K+)-stimulated ATPase sequence is consistent with the existence of an enzyme-acyl-phosphate bond of high internal energy with respect to that of ADP.

On the other hand, the hydroxylamine-resistant nature of the phospho-enzyme in the Mg2+-ATPase sequence suggests the existence of a non-acyl type of enzyme phosphate bond with low internal energy relative to that of ADP.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号