首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luteoskyrin is a hepatotoxic and hepatocarcinogenic bisdihydroanthraquinone produced by Penicillium islandicum Sopp. By observing the EPR spectra of DMPO-spin adducts and luteoskyrin semiquinone radical, we investigated in vitro whether luteoskyrin is reduced to its semiquinone radical leading to the generation of active oxygen species in redox systems catalyzed by NADPH-dependent cytochrome reductases of the liver. We found (1) the formation of luteoskyrin semiquinone radical in the NADPH-cytochrome P-450 reductase system under anaerobic conditions, (2) the generation of O- in the systems composed of luteoskyrin, NAD(P)H, and either rat liver microsomal NADPH-cytochrome P-450 reductase or submitochondrial particles and (3) dicoumarol showed no effect on the O- generation in the case of submitochondrial particles. From these results we proposed that luteoskyrin liver injuries are induced by the active oxygen species generated in the process of autoxidation of luteoskyrin semiquinone radical which is produced in the one-electron redox systems catalyzed by the liver NAD(P)H-dependent cytochrome reductases.  相似文献   

2.
Adriamycin semiquinone radicals are spontaneously generated by adriamycin solutions at physiologic pH. Rate of radical formation and equilibrium-state radical yield increase with increasing pH from 7.4 to 8.85. The radicals are oxygen sensitive, but the mechanism of radical formation is oxygen independent and associated with proton removal from the dihydroquinone of adriamycin. The less cardiotoxic and non-mutagenic (Ames test) anthracycline 5-iminodaunorubicin does not form semiquinone radicals spontaneously at physiologic pH.  相似文献   

3.
Solid pyrimidine nucleic acid bases (cytosine, thymine, and uracil) were gamma-irradiated (50 KGy) and dissolved in deaerated solutions of adriamycin in water and dimethylsulfoxide (DMSO). Analogous experiments using unirradiated pyrimidines as controls were also performed. In water only gamma-irradiated cytosine showed a reaction with the adriamycin yielding a single ESR peak (g = 2.0033) consistent with the adriamycin semiquinone radical. Since the unirradiated cytosine gave no reaction, the result suggests an electron transfer from cytosine radicals (generated by gamma-radiolysis) to adriamycin. In DMSO the three gamma-irradiated and unirradiated pyrimidines reacted with adriamycin yielding the adriamycin semiquinone radical observed by ESR. These results suggest that in DMSO an electron is transferred to adriamycin from the pyrimidine radicals and from the parent pyrimidine molecules. However, the process is on the order of 10(5) times more efficient for the pyrimidine radicals. Superoxide radicals (O2-.) were formed following addition of oxygen to the deaerated DMSO solutions containing adriamycin semiquinone radicals. O2-. was spin trapped using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results show a possible reaction sequence in which an electron transferred to adriamycin, by pyrimidine radicals and parent pyrimidine molecules, is subsequently transferred to dissolved oxygen.  相似文献   

4.
The reduction of flavin in hepatic NADH-cytochrome b5 reductase by the hydrated electron (eaq-) was investigated by pulse radiolysis. The eaq- reduced the flavin of NADH-cytochrome b5 reductase to form the red semiquinone between pH 5 and 9. The spectrum of the red semiquinone differs from that of enzyme reduced by dithionite in the presence of NAD+. After the first phase of the reduction, conversion of the red to blue semiquinone was observed at acidic pH. Resulting products are the blue (neutral) or red (anionic) semiquinone or a mixture of the two forms. The pK value for this flavin radical was approximately 6.3. Subsequently, the semiquinone form reacted by dismutation to form the oxidized and the fully reduced forms of the enzyme with a rate constant of 1 x 10(3) M-1 s-1 at pH 7.1. In the presence of NAD+, eaq- reacted with NAD+ to yield NAD(.). Subsequently, NAD. transferred an electron to NAD+-bound oxidized enzyme to form the blue and red semiquinone or mixture of the two forms of the enzyme, where pK value of this flavin radical was approximately 6.3. The blue semiquinone obtained at acidic pH was found to convert to the red semiquinone with a first order rate constant of 90 s-1, where the rates were not affected by pH or the concentration of NAD+. The final product is NAD+-bound red semiquinone of the enzyme.  相似文献   

5.
Probucol, a lipid-lowering drug, has been shown to offer protection against adriamycin-induced cardiomyopathy. In order to define the mechanism of this protection, we examined changes in antioxidants and lipid peroxidation in hearts as well as lipids in hearts and plasma from rats treated with either adriamycin or adriamycin and probucol with appropriate controls. Any potential free radical quenching as well as growth inhibitory effects of probucol were also examined using Chinese hamster ovary (CHO) cells in culture. In animal model, adriamycin caused a significant depression in glutathione peroxidase and increased plasma and cardiac lipids as well as lipid peroxidation. Probucol treatment modulated adriamycin-induced cardiomyopathic changes and increased glutathione peroxidase and superoxide dismutase activities. In the presence of adriamycin under hypoxic conditions, formation of adriamycin semiquinone radical was detected by ESR. The cell growth in these cultures was also inhibited by adriamycin in a dose-dependent manner. Probucol had no effect on adriamycin-induced growth inhibition as well as formation of semiquinone radicals. It is proposed that probucol protection against adriamycin cardiomyopathy is mediated by increased antioxidants and lipid-lowering without any effect on free radical production.  相似文献   

6.
The source of superoxide anion radical (O2-.) in aerobic mixtures consisting of NAD[P]H, 5-methylphenazinium methyl sulfate (or its 1-methoxy derivative) and tetrazolium salt was investigated using superoxide dismutase (SOD), Mn(II), ferricytochrome-C, and epinephrine as probes. NAD[P]H + phenazine + O2 was found to reduce nitroblue tetrazolium, iodonitrotetrazolium, and thiazolyl blue in a manner sensitive to agents that dismutase O2-., viz., SOD and Mn(II). It also mediated the reduction of ferricytochrome-C, and augmented the autooxidation of epinephrine to the adrenochrome, without a tetrazolium salt present in the medium. The autooxidation of epinephrine, but not the reduction of ferricytochrome-C, was found to be sensitive to SOD. Nitroblue tetrazolium, either singly or in combination with SOD, did not stimulate the reduction of ferricytochrome-C. The oxidation of NADH, mediated by a catalytically low concentration of phenazine(+O2), was augmented two-fold by SOD. These observations are consistent with, and lend support to, a scheme of redox events (Scheme-3) wherein it is proposed that the source of O2-. in the NAD[P]H + phenazine + tetrazolium(+O2) system is the reduced phenazine, that the tetrazoinyl radical (a one-electron reduction product of tetrazolium) may not reduce O2 to O2-., that the redox reaction between semiquinone radicals of phenazine and O2 is reversible, and that the disproportionation of semiquinone radicals constitutes an important rate-limiting reaction in the expression of phenazine redox couple.  相似文献   

7.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

8.
The formation of semiquinone free radicals from antitumor drugs has been studied by pulse radiolysis. The semiquinone free radicals are reactive and have short half-lives in aqueous media under anaerobic conditions. The half-lives of the radicals formed from adriamycin, mitomycin C, and 2,5-diaziridinyl-3,6-bis(carboethoxy)amine-1,4-benzoquinone (AZQ) are 50,100, and 200 μs, respectively. The mean diffusion distance of the semiquinone free radical is less than 0.6 μm. In the presence of molecular oxygen the half-life of the semiquinone free radical is shortened. Adriamycin semiquinone reacts rapidly with oxygen, k = 4.4 × 107m?1s?1. In air-saturated buffer the half-life of adriamycin semiquinone radical can be calculated to be 8 μs with a mean diffusion distance of less than 0.1 μm. If the half-lives in buffer are comparable to those within a cell, semiquinone free radicals must be generated close to the site at which they produce a biological effect. One-electron reduction potentials (E71) were determined and were AZQ, ?168 mV, adrenochrome, ?253 mV, mitomycin C, ?271 mV, adriamycin, ?292 mV, daunomycin, ?305 mV, and anthracenedione, ?348 mV. Enzymatic one-electron reduction of these antitumor quinones by NADPH-cytochrome P-450 reductase increased at more positive values of quinone E71.  相似文献   

9.
The S9 fraction of MCF-7 human breast carcinoma cells has NAD(P)H (quinone-acceptor) oxidoreductase activity as measured by the reduction of dichlorophenol-indophenol (DCPIP). This reduction is dependent on the activators Tween-20 and bovine serum albumin and it is inhibitable by dicumarol. The S9 fraction also has cytochrome c reductase activity which is approximately 29 times less than the two-electron reduction activity of NAD(P)H (quinone-acceptor) oxidoreductase. Diaziquone (AZQ) is a substrate for this NAD(P)H oxidoreductase active S9 fraction as judged by its enzymatic reduction detected spectrophotometrically and by electron spin resonance spectroscopy. Two-electron mediated enzymatic reduction of AZQ was evidenced by the formation of the colorless dihydroquinone (AZQH2) which could be followed at 340 nm. The production of the dihydroquinone was inhibitable by dicumarol implicating NAD(P)H oxidoreductase in its formation. Under aerobic conditions, electron spin resonance spectroscopy showed evidence for the production of AZQ semiquinone (AZQH) and oxygen radicals. Under anaerobic conditions no oxygen radicals were observed, but the semiquinone was stable for hours. These results are also inhibitable by dicumarol and suggest a two-step one-electron oxidation process of the dihydroquinone. The production of semiquinone and oxygen radicals as detected by electron spin resonance spectroscopy was more sensitive to dicumarol when NADPH was used as cofactor (68% inhibition of OH and 65% inhibition of AZQH) than when NADH was used (28% inhibition of OH and 5% inhibition of AZQH). This suggests that NADH flavin reductases play a more important role in the one-electron reduction pathway of AZQ in MCF-7 S9 fraction than NADPH reductases. The reduction of AZQ by NAD(P)H (quinone-acceptor) oxidoreductase may play an important role in the bioreductive alkylating properties of AZQ.  相似文献   

10.
An EPR spectrum of the semiquinone radical of daunorubicin (D) was recorded upon illumination (480 nm) of the drug and NAD(P)H in deaerated aqueous and DMF/aqueous solutions. In the latter solvent system, an EPR spectrum with hyperfine structure was recorded. The kinetics of the photoinduced generation and decrease of the EPR signal intensity in the dark were measured. Second order rate constants for the radical recombination were derived for the two solvent systems. Photosensitized production of the superoxide radical, upon illumination of daunorubicin and NAD(P)H, in aerated aqueous or DMF/aqueous solutions, is evidenced by employing a spin trap DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and an SOD assay. 5-Iminodaunorubicin (5-ID), in contrast to the parent compound (D), does not possess photosensitizing properties.  相似文献   

11.
Direct and spin-trapping electron spin resonance methods have been used to study the reactivity of semiquinone radicals from the anthracycline antibiotics daunorubicin and adriamycin towards peroxides (hydrogen peroxide, t-butyl hydroperoxide and cumene hydroperoxide). Semiquinone radicals were generated by one-electron reduction of anthracyclines, using xanthine/xanthine oxidase. It is shown that the semiquinones are effective reducing agents for all the peroxides. From spin-trapping experiments it is inferred that the radical product is either OH (from H2O2) or an alkoxyl radical (from the hydroperoxides) which undergoes beta-scission to give the methyl radical. The rate constant for reaction of semiquinone with H2O2 is estimated to be approx. 10(4)-10(5) M-1 X s-1. The reduction does not appear to require catalysis by metal ions.  相似文献   

12.
The superoxide free radical has been spin trapped in microsomal incubations containing adriamycin, daunorubicin, and mitomycin C. The time sequence of the appearance of the spin-trapped superoxide and the semiquinone radical metabolite of these quinone-containing anticancer drugs indicates that air oxidation of the semiquinone is responsible for the superoxide formation. Superoxide dismutase prevents the formation of the superoxide spin adducts. Microsomal incubations containing anthracyclines intercalated in DNA produce much less superoxide than incubations free of DNA. The first unambiguous ESR evidence for the semiquinone metabolite of mitomycin C in a biological system is also presented.  相似文献   

13.
Anaerobic reduction of hydrogen peroxide in a xanthine/xanthine oxidase system by adriamycin semiquinone in the presence of chelators and radical scavengers was investigated by direct electron paramagnetic resonance and spin trapping techniques. Under these conditions, adriamycin semiquinone appears to react with hydrogen peroxide forming the hydroxyl radical in the presence of chelators such as ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. In the absence of chelators, a related, but unknown oxidant is formed. In the presence of desferrioxamine, adriamycin semiquinone does not disappear in the presence of hydrogen peroxide at a detectable rate. The presence of adventitious iron is therefore implicated during adriamycin semiquinone-catalyzed reduction of hydrogen peroxide. Formation of alpha-hydroxyethyl radical and carbon dioxide radical anion from ethanol and formate, respectively, was detected by spin trapping. Both the hydroxyl radical and the related oxidant react with these scavengers, forming the corresponding radical. In the presence of scavengers from which reducing radicals are formed, the rate of consumption of hydrogen peroxide in this system is increased. This result can be explained by a radical-driven Fenton reaction.  相似文献   

14.
1. A mixture of NADPH and ferrodoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. 2. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine: xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. 3. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. 4. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

15.
Vanadate-stimulated oxidation of NAD(P)H   总被引:1,自引:0,他引:1  
Vanadate stimulates the oxidation of NAD(P)H by biological membranes because such membranes contain NAD(P)H oxidases which are capable of reducing dioxygen to O2 and because vanadate catalyzes the oxidation of NAD(P)H by O2, by a free radical chain mechanism. Dihydropyridines, such as reduced nicotinamide mononucleotide (NMNH), which are not substrates for membrane-associated NAD(P)H oxidases, are not oxidized by membranes plus vanadate unless NAD(P)H is present to serve as a source of O2. When [NMNH] greatly exceeds [NAD(P)H], in such reaction mixtures, one can observe the oxidation of many molecules of NMNH per NAD(P)H consumed. This reflects the chain length of the free radical chain mechanism. We have discussed the mechanism and significance of this process and have tried to clarify the pertinent but confusing literature.  相似文献   

16.
The reaction process of adrenodoxin reductase with NADPH and NADH were investigated. The appearance of new intermediate with a broad absorption band at around 520 nm has been detected by rapid-scan stopped-flow spectrophotometry. Although the formation of this intermediate is more rapid with NADPH than with NADH, the rates of the subsequent decay to the fully reduced state are almost identical (Kobs values were 20.5 and 16.0s-1). These results indicate that the new intermediate is the complex formed between the oxidized enzyme and reduced pyridine nucleotide (enzyme-substrate complex), and that subsequent decay of the intermidiate is caused by a two-electron transfer process from the reduced pyridine nucleotide to the enzyme flavin. On the other hand, spectral and kinetic properties in the steady state of the reoxidation reaction of the enzyme reduced with NADPH and NADH were somewhat different. The rate of reoxidation of the enzyme under aerobic conditions from the reduced state to the oxidized state was 6.5 times faster when a 10-fold molar excess of NADH was used than when NADPH of the same concentration was used. This result is consistent with the fact that the NADH-dependent oxidase activity was 6.4 times greater than that dependent on NADPH. During reoxidation of the reduced enzyme under aerobic conditions in the presence of an excess of NADPH or NADH, the EPR spectra indicated the formation of the flavin semiquinone radical species. Similarly, the formation of semiquinone was observed in the absorption spectrum with either NADPH or NADH under the same conditions as in the EPR measurement. The intensity of the semiquinone signal on EPR was considerably smaller with NADH than with NADPH. These results suggest that NADP+ complex with the enzyme semiquinone protects the radical from oxidation by oxygen to a greater extent than NAD+, and consequently the semiquinone is easier to detect with NADPH than with NADH.  相似文献   

17.
Chemical reduction of the highly active quinone-containing antitumor drugs, adriamycin and daunorubicin formed the same partially reduced free radical previously reported [9] by microsomal activation. In vitro incubation of the chemically activated free radical intermediates with DNA resulted in covalent binding of these drugs to DNA. The adriamycin semiquinone radical has a greater affinity for DNA and covalent complexes up to one adriamycin per 12 nucleotides were obtained. The daunorubicin semiquinone radical, on the other hand, showed a lesser binding affinity and gave rise to complexes in which one drug molecule was covalently bound per 135 nucleotides. The stronger covalent binding of adriamycin to DNA may account for more severe DNA damage induced by this drug.  相似文献   

18.
A mixture of NADPH and ferredoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine:xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

19.
A purely chemical system for NAD(P)H oxidation to biologically active NAD(P)+ has been developed and characterized. Suitable amounts of EDTA, manganous ions and mercaptoethanol, combined at physiological pH, induce nucleotide oxidation through a chain length also involving molecular oxygen, which eventually undergoes quantitative reduction to hydrogen peroxide. Mn2+ is specifically required for activity, while both EDTA and mercaptoethanol can be replaced by analogs. Optimal molar ratios of chelator/metal ion (2:1) yield an active coordination compound which catalyzes thiol autoxidation to thiyl radical. The latter is further oxidized to disulfide by molecular oxygen whose one-electron reduction generates superoxide radical. Superoxide dismutase (SOD) inhibits both thiol oxidation and oxygen consumption as well as oxidation of NAD(P)H if present in the mixture. A tentative scheme for the chain length occurring in the system is proposed according to stoichiometry of reactions involved. Two steps appear of special importance in nucleotide oxidation: (a) the supposed transient formation of NAD(P). from the reaction between NAD(P)H and thiyl radicals; (b) the oxidation of the reduced complex by superoxide to keep thiol oxidation cycling.  相似文献   

20.
The reduction of putidaredoxin reductase by reduced pyridine nucleotides   总被引:1,自引:0,他引:1  
Putidaredoxin reductase (PdR), an FAD-containing protein, mediates the transfer of electrons from NADH to putidaredoxin in the cytochrome P-450cam-dependent oxidation of camphor. Using stopped-flow spectrophotometry, reduction of putidaredoxin reductase by NADH (70 microM) at 4 degrees C appeared to be a pseudo-first-order process with a rate constant in excess of 600 s-1. The reduction of putidaredoxin reductase by NADPH was much slower with a second-order rate constant of 530 s-1 M-1 at 4 degrees C. The reduction of the enzyme was monitored at several wavelengths: 455 nm to follow flavin reduction; 700 nm to follow the appearance of the long-wavelength charge-transfer complex; and 513 nm to detect the presence of a semiquinone form of the flavoprotein. There was no apparent semiquinone formation observed during reduction. The charge-transfer complex can be formed in the presence of NAD+, whereas, no charge-transfer band could be detected when PdR was reduced with NADPH. The titration of chemically or NADPH-reduced putidaredoxin reductase with either a stoichiometric or an excess amount of NAD+ resulted in the formation of a charge-transfer complex, indicating that the reduced form of PdR has a high affinity for NAD+ regardless of the method of reduction. The data presented indicate that putidaredoxin reductase is reduced without the formation of semiquinone intermediate and, upon reduction, forms a tight complex with NAD+. The Keq for the reduction of PdR by NADPH is 1.1 and the midpoint potential for this reaction is -317 +/- 5 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号