首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the reductase domain of cytochrome P450 BM3 (BMR) catalyzes the reduction of cytochrome c and 2,6-dichlorophenolindophenol, we observed a catalytically independent loss of activity. By varying the incubation time for the enzyme prior to reaction initiation, we measured an inactivation rate of 0.22 min(-1). We hypothesized that either an active BMR dimer dissociates to an inactive monomer or BMR undergoes denaturation. We were not able to trap or destabilize a dimer, and BMR inactivation proved to be irreversible. Addition of excess FMN only slightly decreased the rate of inactivation from 0.22 to 0.13 min(-1), indicating inactivation likely does not reflect loss of flavin. When inactivation rates as a function of temperature were fit to the Arrhenius equation, the energy required to inactivate BMR was 9.9 kcal mol(-1)--equivalent to a few hydrogen bonds. The potential instability of BMR under certain conditions raises concerns for the use of BMR as a model or surrogate P450 reductase in other systems.  相似文献   

2.
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.  相似文献   

3.
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.  相似文献   

4.
Chen Z  Ost TW  Schelvis JP 《Biochemistry》2004,43(7):1798-1808
It has been well established that the heme redox potential is affected by many different factors. Among others, it is sensitive to the proximal heme ligand and the conformation of the propionate and vinyl groups. In the cytochrome P450 BM3 heme domain, substitution of the highly conserved phenylalanine 393 results in a dramatic change in the heme redox potential [Ost, T. W. B., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 13421-13429]. We have used resonance Raman spectroscopy to characterize heme structural changes and modification of heme interactions with the protein matrix that are induced by the F393 substitutions and to determine their correlation with the heme redox potential. Our results show that the Fe-S stretching frequency of the 5-coordinated, high-spin ferric heme is not affected by the mutations, suggesting that the electron density in the Fe-S bond in this state is not affected by the F393 mutation and is not a good indicator of the heme redox potential. Substrate binding perturbs the hydrogen bonding between one propionate group and the protein matrix and correlates to both the size of residue 393 and the heme redox potential. However, heme reduction does not affect the conformation of the propionate groups. Although the conformation of the vinyl groups is not affected much by substrate binding, their conformation changes from mainly out-of-plane to predominantly in-plane upon heme reduction. The extent of these conformational changes correlates strongly with the size of the 393 residue and the heme redox potential, suggesting that steric interaction between this residue and the vinyl groups may be of importance in regulating the heme redox potential in the P450 BM3 heme domain. Further implications of our findings for the change in redox potential upon mutation of F393 will be discussed.  相似文献   

5.
The interaction of nitric oxide with cytochrome P450 BM3 from Bacillus megaterium has been analyzed by spectroscopic techniques and enzyme assays. Nitric oxide ligates tightly to the ferric heme iron, inducing large changes in each of the main visible bands of the heme and inhibiting the fatty acid hydroxylase function of the protein. However, the ferrous adduct is unstable under aerobic conditions, and activity recovers rapidly after addition of NADPH to the flavocytochrome due to reduction of the heme via the reductase domain and displacement of the ligand. The visible spectral properties revert to that of the oxidized resting form. Aerobic reduction of the nitrosyl complex of the BM3 holoenzyme or heme domain by sodium dithionite also displaces the ligand. A single electron reduction destabilizes the ferric-nitrosyl complex such that nitric oxide is released directly, as shown by the trapping of released nitric oxide. Aerobically and in the absence of exogenous reductant, nitric oxide dissociates completely from the P450 over periods of several minutes. However, recovery of the nativelike visible spectrum is accompanied by alterations in the catalytic activity of the enzyme and changes in the resonance Raman spectrum. Specifically, resonance Raman spectroscopy identifies the presence of internally located nitrated tyrosine residue(s) following treatment with nitric oxide. Analysis of a Y51F mutant indicates that this is the major nitration target under these conditions. While wild-type P450 BM3 does not form an aerobically stable ferrous-nitrosyl complex, a site-directed mutant of P450 BM3 (F393H) does form an isolatable ferrous-nitrosyl complex, providing strong evidence for the role of this residue in controlling the electronic properties of the heme iron. We report here the spectroscopic characterization of the ferric- and ferrous-nitrosyl complexes of P450 BM3 and describe the use of resonance Raman spectroscopy to identify nitrated tyrosine residue(s) in the enzyme. Nitration of tyrosine in P450 BM3 may exemplify a typical mechanism by which the ubiquitous messenger molecule nitric oxide exerts a regulatory function over the cytochromes P450.  相似文献   

6.
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants.  相似文献   

7.
Fatty acid monooxygenation by cytochrome P-450BM-3   总被引:8,自引:0,他引:8  
Cytochrome P-450BM-3 is a catalytically self-sufficient enzyme which monooxygenates saturated and unsaturated fatty acids, alcohols, and amides. The protein has two domains: one which contains heme and is P-450-like and the other which contains FAD and FMN and is P-450 reductase-like. Both domains are on a single polypeptide chain. Utilizing a plasmid containing the gene encoding P-450BM-3, we have transformed the Escherichia coli strain DH5 alpha. This clone overexpresses P-450BM-3 to make approximately 20% of the soluble protein of this organism under optimal conditions. P-450BM-3 can be purified to homogeneity from the soluble fraction of the protein of these cells with a recovery of 50% making this cell line an excellent source of this important enzyme. Purified preparations of P-450BM-3 hydroxylate palmitic acid at a rate of 1600 mol/min/mol of heme at 25 degrees C. The stoichiometry of NADPH to oxygen utilized was 1 for all conditions; however, the ratio of oxygen or NADPH utilized per molecule of fatty acid substrate metabolized was different for different homologs of saturated fatty acids, when low concentrations (less than 100 microM) of substrate were used. Lauric and myristic acids were metabolized to two hydroxylated products, irrespective of the initial concentration of fatty acid in the reaction mixture, and the ratio of oxygen consumed to fatty acid hydroxylated was 1. High concentrations of palmitic acid (greater than 200 microM) led to the formation of three polar metabolites and a stoichiometry of 1:1 was observed for oxygen and palmitic acid utilization. These results indicate that a single hydroxyl group was inserted into each of these molecules. Lower concentrations (less than 50 microM) of palmitic acid were metabolized to additional polar metabolites, and the ratio of oxygen consumed to fatty acid substrate consumed approximated 3:1. These results can be explained best by a hypothesis that the initial hydroxylated compounds, which accumulate during the oxidation of palmitic acid by P-450BM-3, can be further oxidized by this enzyme to polyhydroxy- or hydroxy-ketone products.  相似文献   

8.
The potential of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium for biocatalysis and biotechnological application is widely acknowledged. The catalytic and structural analysis of the Ala82Phe mutant of P450 BM3 has shown that filling a hydrophobic pocket near the active site improved the binding of small molecules, such as indole (see Huang et al., J. Mol. Biol., 2007, 373, 633) and styrene. In this paper, additional mutations at Thr438 are shown to decrease the binding of and catalytic activity towards laurate, whereas they significantly increased the stereo-specificity of styrene epoxidation. Production of R-styrene oxide with 48% and 64% e.e., respectively, was achieved by the Ala82Phe-Thr438Leu and Ala82Phe-Thr438Phe mutants. These structure-based mutants of P450 BM3 illustrate the promise of rational design of synthetically useful biocatalysts for regio- and stereo- specific mono-oxygenation reactions.  相似文献   

9.
Flavocytochrome P450 BM3 FMN domain is unique among the family of flavodoxins and homologues, in not forming a stable neutral blue FMN semiquinone radical. Anaerobic, one-electron reduction of the isolated domain over the pH 7-9.5 range showed that it forms an anionic red semiquinone that disproportionates slowly (0.014s(-1) at pH 7). The rate of disproportionation decreased at higher pH, indicating that protonation of the anionic semiquinone is an important feature of the mechanism. The reduction potential for the oxidised-semiquinone couple was determined to be -240mV and was largely independent of pH. The semiquinone appears, therefore, to be kinetically trapped by a slow protonation event, enabling it to act as a low-potential electron donor to the P450 heme.  相似文献   

10.
In flavocytochrome P450 BM3 there are several active site residues that are highly conserved throughout the P450 superfamily. Of these, a phenylalanine (Phe393) has been shown to modulate heme reduction potential through interactions with the implicitly conserved heme-ligand cysteine. In addition, a distal threonine (Thr268) has been implicated in a variety of roles including proton donation, oxygen activation and substrate recognition. Substrate binding in P450 BM3 causes a shift in the spin state from low- to high-spin. This change in spin-state is accompanied by a positive shift in the reduction potential (DeltaE(m) [WT+arachidonate (120 microM)]=+138 mV). Substitution of Thr268 by an alanine or asparagine residue causes a significant decrease in the ability of the enzyme to generate the high-spin complex via substrate binding and consequently leads to a decrease in the substrate-induced potential shift (DeltaE(m) [T268A+arachidonate (120 microM)]=+73 mV, DeltaE(m) [T268N+arachidonate (120 microM)]=+9 mV). Rate constants for the first electron transfer and for oxy-ferrous decay were measured by pre-steady-state stopped-flow kinetics and found to be almost entirely dependant on the heme reduction potential. More positive reduction potentials lead to enhanced rate constants for heme reduction and more stable oxy-ferrous species. In addition, substitutions of the threonine lead to an increase in the production of hydrogen peroxide in preference to hydroxylated product. These results suggest an important role for this active site threonine in substrate recognition and in maintaining an efficiently functioning enzyme. However, the dependence of the rate constants for oxy-ferrous decay on reduction potential raises some questions as to the importance of Thr268 in iron-oxo stabilisation.  相似文献   

11.
Three newly discovered drug metabolizing mutants of cytochrome P450 BM3 (van Vugt-Lussenburg et al., Identification of critical residues in novel drug metabolizing mutants of Cytochrome P450 BM3 using random mutagenesis, J Med Chem 2007;50:455-461) have been studied at an atomistic level to provide structural explanations for a number of their characteristics. In this study, computational methods are combined with experimental techniques. Molecular dynamics simulations, resonance Raman and UV-VIS spectroscopy, as well as coupling efficiency and substrate-binding experiments, have been performed. The computational findings, supported by the experimental results, enable structural rationalizations of the mutants. The substrates used in this study are known to be metabolized by human cytochrome P450 2D6. Interestingly, the major metabolites formed by the P450 BM3 mutants differ from those formed by human cytochrome P450 2D6. The computational findings, supported by resonance Raman data, suggest a conformational change of one of the heme propionate groups. The modeling results furthermore suggest that this conformational change allows for an interaction between the negatively charged carboxylate of the heme substituent and the positively charged nitrogen of the substrates. This allows for an orientation of the substrates favorable for formation of the major metabolite by P450 BM3.  相似文献   

12.
The nitrogenous pi -acceptor ligand 4-cyanopyridine (4CNPy) exhibits reversible ligation to ferrous heme in the flavocytochrome P450 BM3 (Kd=1.8 microm for wild type P450 BM3) via its pyridine ring nitrogen. The reduced P450-4CNPy adduct displays unusual spectral properties that provide a useful spectroscopic handle to probe particular aspects of this P450. 4CNPy is competitively displaced upon substrate binding, allowing a convenient route to the determination of substrate dissociation constants for ferrous P450 highlighting an increase in P450 substrate affinity on heme reduction. For wild type P450 BM3, Kd(red)(laurate)=82.4 microm (cf. Kd(ox)=364 microm). In addition, an unusual spectral feature in the red region of the absorption spectrum of the reduced P450-4CNPy adduct is observed that can be assigned as a metal-to-ligand charge transfer (MLCT). It was discovered that the energy of this MLCT varies linearly with respect to the P450 heme reduction potential. By studying the energy of this MLCT for a series of BM3 active site mutants with differing reduction potential (Em), the relationship EMLCT + (3.53 x = Em 17,005 cm)(-1) was derived. The use of this ligand thus provides a quick and accurate method for predicting the heme reduction potentials of a series of P450 BM3 mutations using visible spectroscopy, without the requirement for redox potentiometry.  相似文献   

13.
Selective oxy-functionalization of nonactivated C-H bonds is a long-standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono-oxygenase enzymes are promising catalysts for such oxy-functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3-catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co-immobilized enzymes in O2-gassed and pH-controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2-limited conditions at up to 500-ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl-acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy-functionalization and show their integration into a coherent strategy for process intensification.  相似文献   

14.
Smith SJ  Munro AW  Smith WE 《Biopolymers》2003,70(4):620-627
Resonance Raman scattering from cytochrome P450 BM3 is obtained with a Raman microprobe using 406-nm excitation with an accumulation time of a few seconds. The small sample size and rapid measurement time make the routine characterization of P450 systems by resonance Raman spectroscopy easier. Addition of imidazole and imidazole derivatives as inhibitors causes the appearance of additional peaks due to vinyl modes, increases the relative intensity of symmetric modes that would be A(1g) in D(4h) symmetry, and causes a large drop in the intensity of nu(11). This information indicates that the ligation of imidazoles to the heme iron causes the alignment of the vinyl modes with the plane of the heme ring and reduces the out of plane distortion of the ring. The effect of both inhibitors is similar but there is a subtle difference in the extent of the reduction in the intensity of nu(11), which suggests that steric effects within the pocket are having some effect.  相似文献   

15.
Recently, we described a triple mutant of the bacterial cytochrome P450 BM3 as the first mutant with affinity for drug-like compounds. In this paper, we show that this mutant, but not wild-type BM3, is able to metabolise testosterone and several drug-like molecules such as amodiaquine, dextromethorphan, acetaminophen, and 3,4-methylenedioxymethylamphetamine that are known substrates of human P450s. Interestingly, the metabolism of 3,4-methylenedioxymethylamphetamine and acetaminophen could be stimulated up to 70-fold by the addition of caffeine, a known activator of rat P450 3A2. With testosterone metabolism, homotropic cooperativity was observed. This shows that heterotropic and homotropic cooperativity, known to occur in the P450 3A family, can also take place in BM3. BM3 therefore can be used as a model system to study atypical kinetics in mammalian P450s. Second, this study shows that BM3 can be engineered to a drug-metabolising enzyme, making it a promising candidate to use as biocatalyst in drug discovery and synthesis.  相似文献   

16.
The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11beta-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17alpha-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17alpha-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the "activation" of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11beta-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.  相似文献   

17.
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y > F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H > F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.  相似文献   

18.
In this study, the first fluorescent assay for bacterial cytochrome P450 BM3 (BM3) and mutants is described. BM3 mutants are potentially very versatile biocatalysts for the production of fine chemicals. A fluorescent assay would be very useful for the identification of nonnatural ligands in high-throughput inhibition assays. Because of the ease and sensitivity of alkoxyresorufin O-dealkylation assays, four different alkoxyresorufins were evaluated as substrates. Wild-type BM3 showed extremely low activity toward all four alkoxyresorufins tested. Five different BM3 mutants were constructed, carrying different combinations of mutations R47L, F87V, and L188Q, which were previously shown to increase activity toward nonnatural substrates. For all mutants, a high benzyloxyresorufin O-dealkylation (BROD) activity was found. The triple mutant of BM3, R47L/F87V/L188Q, showed the highest activity, increasing 900-fold compared to wild-type BM3. The BROD assay could also be applied in whole Escherichia coli cells; permeabilization by lipopolysaccharide deficiency strongly increased activity. To demonstrate the applicability of the BROD assay to screening for novel ligands of BM3 R47L/F87V/L188Q, a library of 45 drug-like compounds was tested for inhibition. Of these compounds, 8 showed strong inhibition of the BROD activity, demonstrating for the first time that drug-like molecules also can bind with high affinity to BM3 mutants.  相似文献   

19.
Surface-enhanced resonance Raman scattering (SERRS) of substrate-free and substrate-bound forms of the P450 domain of cytochrome P450 BM3 are reported and assigned. Substrate-free P450 yields mixed spin heme species in which the pentacoordinate high-spin arrangement is dominant. The addition of laurate or palmitate leads to an increase in high spin content and to an allosteric activation of heme mode v29, which is sensitive to peripheral heme/protein interactions. Differences between laurate and palmitate binding are observed in the relative intensities of a number of bands and the splitting of the heme vinyl modes. Laurate binding to P450 results in different protein environments being experienced by each vinyl mode, whereas palmitate binding produces a smaller difference. The results demonstrate the ability of SERRS to probe substrate/prosthetic group interactions within an active site, at low protein concentrations.  相似文献   

20.
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during peroxide-driven P450 catalysis involves methionine oxidation. Although there was no increase in the stability of the P450 under standard reaction conditions (in 10 mM hydrogen peroxide), complete substitution with norleucine resulted in nearly two-fold-increased peroxygenase activity. Thermostability was significantly reduced. The fact that the enzyme can tolerate such extensive amino acid replacement suggests that we can engineer enzymes with unique chemical properties via incorporation of unnatural amino acids while retaining or improving catalytic properties. This system also provides a platform for directing enzyme evolution using an extended set of protein building blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号