首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental gradients play a central role in axial patterning in hydra. As part of the effort towards elucidating the molecular basis of these gradients as well as investigating the evolution of the mechanisms underlying axial patterning, genes encoding signaling molecules are under investigation. We report the isolation and characterization of HyBMP5-8b, a BMP5-8 orthologue, from hydra. Processes governing axial patterning are continuously active in adult hydra. Expression patterns of HyBMP5-8b in normal animals and during bud formation, hydra's asexual form of reproduction, were examined. These patterns, coupled with changes in patterns of expression in manipulated tissues during head regeneration, foot regeneration as well as under conditions that alter the positional value gradient indicate that the gene is active in two different processes. The gene plays a role in tentacle formation and in patterning the lower end of the body axis.  相似文献   

2.
SUMMARY Members of the TGF-β superfamily of signaling molecules are widespread in metazoans, but the evolutionary origin of particular subclasses of signaling mechanisms is poorly defined. The DPP/BMP class, for example, is implicated in dorsal-ventral patterning, neural patterning, and limb development. Here we report the presence of several components of a DPP/BMP-specific signal transduction cascade in a nonbilateral animal, the coral Acropora millepora . The discovery of these components, a putative type I receptor and two putative receptor-activated Smads, suggests that DPP/BMP signaling predates both dorsal-ventral pattern formation and limb development. We postulate that an ancestral role in neuroepithelial patterning may account for the high level of conservation between DPP/BMP signaling components found in this nonbilateral animal and the more complex triploblastic organisms of the arthropod and chordate phyla.  相似文献   

3.
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.  相似文献   

4.
A decade ago, bone morphogenetic protein 1 (BMP1) was shown to provide the activity necessary for proteolytic removal of the C-propeptides of procollagens I-III: precursors of the major fibrillar collagens. Subsequent studies have shown BMP1 to be the prototype of a small group of extracellular metalloproteinases that play manifold roles in regulating formation of the extracellular matrix (ECM). Soon after initial cloning of BMP1, genetic studies showed the related Drosophila proteinase Tolloid (TLD) to be necessary for the formation of the dorsal-ventral axis in early embryogenesis. It is now clear that the BMP1/TLD-like proteinases, conserved in species ranging from Drosophila to humans, act in dorsal-ventral patterning via activation of transforming growth factor beta (TGFbeta)-like proteins BMP2, BMP4 (vertebrates) and decapentaplegic (arthropods). More recently, it has become apparent that the BMP1/TLD-like proteinases are activators of a broader subset of the TGFbeta superfamily of proteins, with implications that these proteinases may be key in orchestrating the formation of ECM with growth factor activation and BMP signaling in morphogenetic processes.  相似文献   

5.
Li D  Sun H  Deng W  Tao D  Liu Y  Ma Y 《Zoological science》2011,28(6):397-402
Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos. Piwi proteins are required for germline and stem cell development. Our previous study demonstrated that Zili, zebrafish Piwil2, inhibits transforming growth factor (TGF)-βsignaling by interacting with Smad4, suggesting a role for zili in Bmp signaling. In the present study, zili-MO or zili mRNA was microinjected into one-cell embryos to knock down or elevate the expression of zili to study the role of zili during early zebrafish embryogenesis. Knockdown of zili inhibited the expression of dorsal marker genes, and enhanced that of ventral marker genes. In contrast, overexpression of zili promoted expression of dorsal marker genes, while it inhibited ventral marker genes. These results suggest that zili regulates DV patterning. The influence of zili on the Bmp pathway was further explored. Knockdown of zili resulted in higher expression levels of bmp2b, and bmp4, the Bmp signaling ligands, and reduced expression of chordin (chd), noggin (nog1), and follistatin (fst), which encode BMP antagonists. Meanwhile, overexpression of zili produced opposite effects. In conclusion, our results indicate that zili regulates dorsal-ventral patterning by antagonizing Bmp signaling during early embryogenesis in zebrafish.  相似文献   

6.
7.
The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis.  相似文献   

8.
Insulin-like growth factors (IGFs) are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b) in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.  相似文献   

9.
10.
Signaling via bone morphogenetic proteins (BMPs) regulates a vast array of diverse biological processes in the developing embryo and in postembryonic life. Many insights into BMP signaling derive from studies of the BMP signaling gradients that pattern cell fates along the embryonic dorsal-ventral (DV) axis of both vertebrates and invertebrates. This review examines recent developments in the field of DV patterning by BMP signaling, focusing on extracellular modulation as a key mechanism in the formation of BMP signaling gradients in Drosophila, Xenopus, and zebrafish.  相似文献   

11.
The dorsal-ventral patterning of the Drosophila embryo is controlled by a well-defined gene regulation network. We wish to understand how changes in this network produce evolutionary diversity in insect gastrulation. The present study focuses on the dorsal ectoderm in two highly divergent dipterans, the fruitfly Drosophila melanogaster and the mosquito Anopheles gambiae. In D. melanogaster, the dorsal midline of the dorsal ectoderm forms a single extra-embryonic membrane, the amnioserosa. In A. gambiae, an expanded domain forms two distinct extra-embryonic tissues, the amnion and serosa. The analysis of approximately 20 different dorsal-ventral patterning genes suggests that the initial specification of the mesoderm and ventral neurogenic ectoderm is highly conserved in flies and mosquitoes. By contrast, there are numerous differences in the expression profiles of genes active in the dorsal ectoderm. Most notably, the subdivision of the extra-embryonic domain into separate amnion and serosa lineages in A. gambiae correlates with novel patterns of gene expression for several segmentation repressors. Moreover, the expanded amnion and serosa anlage correlates with a broader domain of Dpp signaling as compared with the D. melanogaster embryo. Evidence is presented that this expanded signaling is due to altered expression of the sog gene.  相似文献   

12.
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.  相似文献   

13.
The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.  相似文献   

14.
Bilateral symmetry is a hallmark of the Bilateria. It is achieved by the intersection of two orthogonal axes of polarity: the anterior-posterior (A-P) axis and the dorsal-ventral (D-V) axis. It is widely thought that bilateral symmetry evolved in the common ancestor of the Bilateria. However, it has long been known that members of the phylum Cnidaria, an outgroup to the Bilateria, also exhibit bilateral symmetry. Recent studies have examined the developmental expression of axial patterning genes in members of the phylum Cnidaria. Hox genes play a conserved role in patterning the A-P axis of bilaterians. Hox genes are expressed in staggered axial domains along the oral-aboral axis of cnidarians, suggesting that Hox patterning of the primary body axis was already present in the cnidarian-bilaterian ancestor. Dpp plays a conserved role patterning the D-V axis of bilaterians. Asymmetric expression of dpp about the directive axis of cnidarians implies that this patterning system is similarly ancient. Taken together, these result imply that bilateral symmetry had already evolved before the Cnidaria diverged from the Bilateria.  相似文献   

15.
16.
Digit regeneration is regulated by Msx1 and BMP4 in fetal mice   总被引:6,自引:0,他引:6  
The regeneration of digit tips in mammals, including humans and rodents, represents a model for organ regeneration in higher vertebrates. We had previously characterized digit tip regeneration during fetal and neonatal stages of digit formation in the mouse and found that regenerative capability correlated with the expression domain of the Msx1 gene. Using the stage 11 (E14.5) digit, we now show that digit tip regeneration occurs in organ culture and that Msx1, but not Msx2, mutant mice display a regeneration defect. Associated with this phenotype, we find that Bmp4 expression is downregulated in the Msx1 mutant digit and that mutant digit regeneration can be rescued in a dose-dependent manner by treatment with exogenous BMP4. Studies with the BMP-binding protein noggin show that wild-type digit regeneration is inhibited without inhibiting the expression of Msx1, Msx2 or Bmp4. These data identify a signaling pathway essential for digit regeneration, in which Msx1 functions to regulate BMP4 production. We also provide evidence that endogenous Bmp4 expression is regulated by the combined activity of Msx1 and Msx2 in the forming digit tip; however, we discovered a compensatory Msx2 response that involves an expansion into the wild-type Msx1 domain. Thus, although both Msx1 and Msx2 function to regulate Bmp4 expression in the digit tip, the data are not consistent with a model in which Msx1 and Msx2 serve completely redundant functions in the regeneration response. These studies provide the first functional analysis of mammalian fetal digit regeneration and identify a new function for Msx1 and BMP4 as regulators of the regenerative response.  相似文献   

17.
The tail of the frog tadpole, comprising spinal cord, muscle, and notochord, regenerates following partial amputation. We show that, in Xenopus, this occurs throughout development, except for a "refractory period" between stages 45 and 47, when tails heal over without regeneration. Regeneration can be enabled during this refractory period by activation of either the BMP or Notch signaling pathways. Conversely, regeneration can be prevented during the later, regenerative, stages by inhibition of either pathway. BMP signaling will cause regeneration of all tissues, whereas Notch signaling activates regeneration of spinal cord and notochord, but not muscle. An activated form of Msx1 can promote regeneration in the same way as BMP signaling. Epistasis experiments suggest that BMP signaling is upstream of Notch signaling but exerts an independent effect on muscle regeneration. The results demonstrate that regenerative capability can be enabled by genetic modifications that reactivate specific components of the developmental program.  相似文献   

18.
Abstract Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.  相似文献   

19.
We identified Drosophila Smurf (DSmurf) as a negative regulator of signaling by the BMP2/4 ortholog DPP during embryonic dorsal-ventral patterning. DSmurf encodes a HECT domain ubiquitin-protein ligase, homologous to vertebrate Smurf1 and Smurf2, that binds the Smad1/5 ortholog MAD and likely promotes its proteolysis. The essential function of DSmurf is restricted to its action on the DPP pathway. DSmurf has two distinct, possibly mechanistically separate, functions in controlling DPP signaling. Prior to gastrulation, DSmurf mutations cause a spatial increase in the DPP gradient, as evidenced by ventrolateral expansion in expression domains of target genes representing all known signaling thresholds. After gastrulation, DSmurf mutations cause a temporal delay in downregulation of earlier DPP signals, resulting in a lethal defect in hindgut organogenesis.  相似文献   

20.
Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010 and Yu et al., 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号