首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La formation du chapeau, qui constitue un événement morphogénétique de la plus grande importance chez ?'algue Acetabularïa, est influénce par une perturbation unique du cycle lumière-obscurité, done aussi, vraisemblablement, des rythmes circadiens. La perturbation a lieu plusieurs semaines avant ?expression morphogénétique. ? effet est plus marqué sur la formation du chapeau que sur la croissance. Son importance dépend du moment du nyctémère où la perturbation intervient.

?effet dépend du stade de développement de ?'algue: lorsque le transfert d' un régime L-D à un autre a lieu pendant la phase de grande croissance, la formation du chapeau est retardée, mais ? importance de ? effet s'atténue avec le temps. Lorsque le transfert a lieu pendant la phase terminale de croissance (lente), la formation du chapeau est accélérée de façon transitoire. Lorsqu'il a lieu alors que les algues ont presque atteint leur taille finale, il est sans effet. Ces résultats présentent des analogies avec le photopériodisme.

Mots clefs–Acetabularia, rythmes circadiens, morphogénèse, photopériodisme.

Cap formation, a major developmental process in the alga Acetabularia, is influenced by a single perturbation of the entraining light-dark schedule and thus, presumably, of the circadian rhythms. This perturbation is brought about several weeks before cap formation, the most conspicuous expression of morphogenesis in Acetabularia. The effect is more pronounced on cap formation than on growth. It varies in importance with the circadian time at which the perturbation was brought about.

The effect is dependent on the developmental state of the alga: transfer carried out during the logarithmic phase of growth produces a delay whose importance decreases with time. When carried out during the phase of slow terminal growth, the transfer induces a transistory acceleration of cap formation. When the algae approach their final length, no effect is elicited. Photoperiodism seems to be involved.  相似文献   

2.
The 3',5'-adenosine monophosphate (cyclic-AMP) content of the unicellular alga Acetabularia has been examined at various developmental stages. It has been found that very young algae, less than 10 mm in length, have a high cAMP content [more than 7 pmoles per 100 mg wet weight (WW)], but that with the growth of the algae, the cAMP content decreases rapidly, reaching the low level of 0.5–1.0 pmoles per 100 mg WW. The cAMP content remains at this level until cap differentiation, after which an increase in cAMP content accompanies cap enlargement. It has been shown that these results are unlikely to be affected by changes in the cAMP content induced by variations in circadian rhythm.
Treatment with theophylline (2.10−3 M), a phosphodiesterase inhibitor, results in an increase in the cAMP content and delays growth and cap formation. Experiments on the effects of theophylline upon the circadian rhythm of oxygen evolution have shown that the continuous presence of theophylline in the culture medium does not induce a phase shift in the rhythm.
The cAMP content of anucleate Acetabularia shows development stage variations parallel to that of the whole algae.  相似文献   

3.
The 3',5'-adenosine monophosphate (cyclic-AMP) content of the unicellular alga Acetabularia has been examined at various developmental stages. It has been found that very young algae, less than 10mm in length, have a high cAMP content [more than 7 pmoles per 100 mg wet weight (WW)], but that with the growth of the algae, the cAMP content decreases rapidly, reaching the low level of 0.5--1.0 pmoles per 100mg WW. The cAMP content remains at this level until cap differentiation, after which an increase in cAMP content accompanies cap enlargement. It has been shown that these results are unlikely to be affected by changes in the cAMP content induced by variations in circadian rhythm. Treatment with theophylline (2.10(-3) M), a phosphodieterase inhibitor, results in an increase in the cAMP content and delays growth and cap formation. Experiments on the effects of theophylline upon the circadian rhythm of oxygen evolution have shown that the continuous presence of theophylline in the culture medium does not induce a phase shift in the rhythm. The cAMP content of anucleate Acetabularia shows development stage variations parallel to that of the whole algae.  相似文献   

4.
We were able to demonstrate the presence of F 2,6-BP in Acetabularia in 7 out of 7 experiments. The amount varies between 4 and 38 pmole par mg protein. We were not able to evidence a circadian rhythm (CR) in its content. However, important fluctuations occur .(Fig. 1). This, of course excludes any precise conclusion about absolute amounts. Biologically active substances often exert an action modulated by circadian time. Thus, the effect of exogenous F 2,6-BP was assayed by fragmenting the long cell in F 2,6-BP-containing sea-water, and then follow growth and cap formation (we performed the experiment at different times during the 24 h cycle, in LD 12:12 conditions. Interestingly, the growth curves (obtained with 4 different concentrations) are statistically accelerated when the treatment had been performed at the beginning of the 24 h cycle (circadian time, CT, 0 is the transition time dark/light), less at CT 9.5, nul at CT 12 and again significant at CT 20. (Fig.IV). There is apparently no strictly defined light effect that could immediately modify the F-2,6-BP level, but there is presumably an important influence of CT-dependent physiological state of the alga. Again, it should be underlined that experimental biology should take time into account.  相似文献   

5.
We were able to demonstrate the presence of F 2,6-BP in Acetabularia in 7 out of 7 experiments. The amount varies between 4 and 38 pmole par mg protein. We were not able to evidence a circadian rhythm (CR) in its content. However, important fluctuations occur.(Fig. 1). This, of course excludes any precise conclusion about absolute amounts. Biologically active substances often exert an action modulated by circadian time. Thus, the effect of exogenous F 2,6-BP was assayed by fragmenting the long cell in F 2,6-BP-containing sea-water, and then follow growth and cap formation (we performed the experiment at different times during the 24 h cycle, in LD 12:12 conditions. Interestingly, the growth curves (obtained with 4 different concentrations) are statistically accelerated when the treatment had been performed at the beginning of the 24 h cycle (circadian time, CT, 0 is the transition time dark/light), less at CT 9.5, nul at CT 12 and again significant at CT 20. (Fig.IV). There is apparently no strictly defined light effect that could immediately modify the F-2,6-BP level, but there is presumably an important influence of CT-dependent physiological state of the alga. Again, it should be underlined that experimental biology should take time into account.  相似文献   

6.
The c-AMP content has been found to double when Acetabularia develop from 5–10 mm long to grown or almost full-grown algae.
The biological significance of this fact has been approached by studying the effects of drugs known to influence the intracellular c-AMP content on the development of Acetabularia. When grown in the presence of theophyllin or papaverin, inhibitors of phosphodiesterase, the Acetabularia display a striking response during the exponential growth period; the final length, however, is not affected. Both substances increase the c-AMP content of the algea. Isoproterenol, which activates adenylate cyclase in many systems, also influences Acetabularia during the exponential growth period and, in addition, slightly affects cap formation.
The change in c-AMP content in the course of development and the effects of drugs influencing (theophyllin and papaverin) or likely to influence (isoproterenol) the c-AMP content of the algae suggest that this nucleotide plays a role at the time of intense growth.
The same phosphodiesterase activity has been found in the 5–10 mm and the 19–25 mm long algae, whereas two enzymes were found in cap-bearing Acetabularia.
The results are discussed as well as the involvement of c-AMP in the development of this alga.  相似文献   

7.
Abstract

β‐galactosidase has been chosen as an indicator of glycoprotein metabolism in Acetabularia, an unicellular and uninucleate green alga. This catabolic enzyme was quantified by fluorecence spectrometry. It was found at all developmental stages, but the activity levels differed, peaking at the end of the growth phase, at the time of cap morphogenesis initiation, β‐galactosidase activity is also subjected to periodic modulation, displaying a bimodal rhythm with a prominent peak at 16 h. The distribution of the enzyme was examined by cytochemistry, using a substrate analogue (X‐gal). It is present both in the cytoplasm and in the cell wall. No apico‐basal gradient was detectable. The physiological role of glycoproteins was assessed with tunicamycin, an inhibitor of N‐linked glycoprotein synthesis. Two pulses of 3 or 4 h of inhibitor (10 μg ml‐1) always inhibited growth, but more severely during the light period. One pulse may inhibit growth during the light period and stimulate it during the dark one; it may also have little effect, in both periods. Cap formation is inhibited between time 0 and 7. During the dark or subjective dark period, it is often stimulated or not affected. The same results were obtained in constant light. Cap formation is also inhibited in anucleate algae treated during the light period.  相似文献   

8.
In the giant unicellular green alga, Acetabularia acetabulum (L.) Silva, development is altered by light. For example, blue light induces the vegetative apex to produce whorls of hairs that encircle the stalk and, later, blue light may trigger reproductive onset. The two goals of this study were to determine when changes in apical shape occur during formation of the reproductive structure, or "cap," and to determine which of these differentiation events require light. The first visible indication of cap initiation was a rounded swelling of the apex, which we call a knob-shaped apex (time = 0 hours). Subsequent changes in shape were a hyaline, knob-shaped apex, reached by 50% of the population 3 h later, and the formation of a whorl of unilobed chambers at 16 h. These chambers became bilobed at 33 h and trilobed at 34 h. Successive sets of cap hairs grew from protuberances found on the surface of the uppermost lobes of the chambers (superior corona). After knob, the remainder of cap formation was largely independent of light. However, the initiation of each set of cap hairs required light. If a recently initiated cap was amputated, the individual recapitulated development, repeating a portion of vegetative morphogenesis (i.e. it made whorls of sterile hairs) before initiating a new cap. The developmental sequence between amputation and initiation of a new cap required light. A model for light-regulated changes in shape at the apex of Acetabularia acetabulum, which integrates whorl and cap formation and encompasses both vegetative and reproductive development of this organism, is presented.  相似文献   

9.
Abstract. The level of peroxidase activity utilizing ascorbic acid changes during the development of the green alga, Acetabularia mediterranea. During development almost parallel levels of peroxidase activity and ascorbic acid content are detectable: both steadily decrease as algae progress from very young, slowly growing cells to the rapid growth stage and then to cells exhibiting differentiation into primordium and cap. Changes in the levels of the enzyme and its substrate in the cytoplasm and periplasm were demonstrated using biochemical and cytochemical procedures. Concomitant with these developmental changes, we also observed changes in the stage-specific patterns of ascorbic acid concentration: growing algae exhibit a pronounced negative apicobasal gradient of ascorbic acid. Acetabularia cultivated at 1,200 lux (the normal intensity in a 12-h-light/12-h-dark cycle) and at 700 lux (intensity at which growth is reduced, and cap formation is delayed) were also compared. The higher light intensity induced a moderate decrease in the ascorbic acid content without noticeable changes in the compartmental distribution in the cytoplasm and periplasm, and an increase in the level of periplasmic peroxidase activity with little change in the total peroxidase activity. Catalase was found to be present at very low levels and is unlikely to play a role in H2O2 catabolism. Possible roles for ascorbic acid and peroxidase in the development of Acetabularia are discussed.  相似文献   

10.
Studies on the Effects of Bromodeoxyuridine (BUdR) on Differentiation   总被引:1,自引:0,他引:1  
The effects of BUdR on morphogenesis in Acetabularia mediterranea and on embryonic development (sea urchin, tunicate and amphibian embryos) have been studied.
In the presence of BUdR, cap development is affected in both the anucleate and nucleate fragment of the unicellular alga Acetabularia mediterranea . In the nucleate fragment, the initiation of cap formation can be inhibited. BUdR exerts various inhibitory effects on embryonic development. Modifications of sensitivity to BUdR during development are also observed: in Paracentrotus , a change in sensitivity towards the drug occurs at the 16 cell stage, while in amphibian eggs, a modification can be shown after the gastrula stage.
The significance of these observations is discussed.  相似文献   

11.
A cytochemical study of intracellular thiol distribution inAcetabularia mediterranea intact cells was performed using thefluorescent thiol-labelling agent monobromobimane (mBBr). Differentdevelopmental stages were examined during the vegetative phaseand generative phase of the algal life cycle up to cyst maturation.Important changes in thiol localization have been found to coincidewith turning-points ofAcetabularia development. During the rapid growth phase, overall thiol content steadilyincreased along the stalk, being maximal shortly before capdifferentiation. At this stage, the thiol distribution patternparalleled that of cap morphogenesis essential processes: thiolsbeing accumulated at the apex where morphogenesis is going tobe expressed. High thiol contents were also present in the rhizoidal partof the alga throughout the vegetative phase. At the onset ofthe generative phase, important alterations in rhizoid thioldistribution coincided with the presumptive time of nucleardivision. Overall thiol content strongly decreased and thiolsbecame highly concentrated in definite zones localized in thecentral area of the rhizoid. Later on, during the sequence of morphogenetic events leadingto cyst differentiation, changes in thiol localization and relativecontent were observed in the cap rays. Positioning of secondarynuclei into the cap coincided with a high increase in thiolcontent in the entire cap. During the process of cyst formation,thiol content slightly decreased and thiols were localized incyst domains. Thiol distribution was also studied during regenerative processesafter merotomy. A spatio-temporal coincidence was shown withcell wall regeneration. Key words: Acetabularia, thiols, development, bromobimanes  相似文献   

12.
A late stage during the biological cycle of the unicellular alga Acetabularia is the differentiation of a cap at the apical end of the stalk. A minimal model of the spatio-temporal regulation of this event is proposed on the basis of biological data available and current hypotheses. This involves the interaction between a diffusing inhibitor specific to the translation of cap mRNAs and a graded distribution of these messengers. The model accounts for delayed protein synthesis which occurs preferably at the apex and is likely to initiate the formation of the cap. The biological and theoretical implications are discussed.  相似文献   

13.
Peroxidases in Acetabularia: their possible role in development   总被引:1,自引:0,他引:1  
Abstract. Crude enzymatic extracts from Acetabularia exhibit very low peroxidase activity after a lag period. Starch gel electrophoresis of extracts from growing algae shows a single, extremely anodic band. Extracts of small, slow-growing or cap-bearing algae, which do not grow any more, do not exhibit any peroxidase band. Cytochemical staining with benzidine reveals changes in both the quantity and distribution of peroxidase along the polarized Acetabularia cell. The homogenous staining of small algae becomes distributed along a negative apico-basal gradient when the algae initiate their rapid growth phase. This polarized pattern is repeated on the hair whorls. A similar developmental sequence directs cap growth, with an initial intense staining reaction of the primordium, which later leaves only the corona inferior stained blue. Finally, the Acetabularia cell remains slightly blue at the edges of the rhizoidal out-growths and cap rays. Crude extracts of Acetabularia induce a lag in standard horseradish peroxidase (HRP) activity. The inhibitor is always present in small and growing algae; it is sometimes absent or less active in cap-bearing algae. In no case does it change the kinetics of the HRP reaction with guaïacol. The lag is completely suppressed by pretreatment with either H2O2 or ascorbate oxidase. The changes in peroxidase activity, correlated with developmental stage and according to a polarized gradient, suggest that the enzyme could be involved in some way in the control of morphogenesis in Acetabularia . An inhibitor of peroxidase activity, which disappears as the cap matures, might, in turn, exert a regulatory function.  相似文献   

14.
Klaus Zetsche 《Planta》1969,89(3):244-253
Summary It has already been shown that in the uninucleate green alga Acetabularia mediterranea, a close relationship in time exists between cap formation and the activity of the enzyme UDPG-pyrophosphorylase. The activity of the enzyme increases strongly when cap formation sets in. Similar changes in enzyme activity are observed in nucleate and anucleate cells. It is very likely that the increase in the activity of the UDPG-pyrophosphorylase during cap formation is a result of increased synthesis of the enzyme (Zetsche, 1968).In addition to the correlation in time between cap formation and enzyme activity, there exists a close correlation in space which is expressed in terms of a polar distribution of the enzyme. The activity of the enzyme is highest in the apical region of the cell, whereas toward the basal end it decreases sharply. This apico-basal gradient of enzyme activity is especially strong in cells with a cap. By means of several experiments it was excluded that the above results were the consequence of an unequal distribution of inhibitors or activators of enzyme activity or of a differential inactivation of the enzyme during homogenization. We therefore conclude that the differences in enzyme activity between various regions of the cell are based upon differences in the amount of the enzyme present within these regions.Further experiments clearly demonstrated that the polar distribution of the enzyme is the result of a preferential synthesis of the enzyme in the apical region of the stalk. The rate of enzyme synthesis is higher within the apical region than in the middle and basal region, and this is particularly evident at the time of onset of cap formation. We conclude that the messenger-RNA responsible for the synthesis of the UDPG-pyrophosphorylase is distributed in the form of an apico-basal concentration gradient. If we accept the existence of such a gradient, then this implies that the messenger-RNA which is synthesized within the nucleus in the rhizoidal end of the cell must be transported over a distance of 60 mm in a polar direction toward the tip of the stalk and must be accumulated there. Unequal distribution of messenger-RNA thus may represent an important factor in the morphogenesis of the cell. However it remains to be shown how such a distribution is brought about.  相似文献   

15.
In order to support the hypothesis that circadian rhythms are implicated in cap formation, experiments were undertaken on the possible time-dependency of the effects of (a) a competitive inhibitor of auxins, morphactin and (b) of auxin (IAA). It was found that: (i) the inhibitory effect of morphactin varies dramatically with the time at which the several weeks' treatment was first begun; (ii) the maximum inhibition varies with development and decreases with time; (iii) IAA accelerates cap formation when the algae are submitted to IAA during the exponential growth phase; the effect is time dependent and decreases with time; (iv) IAA first applied on smaller algae has a transient inhibitory effect which is time dependent; (v) anucleate fragments also respond differentially to an IAA treatment begun at several times in the 24-hr cycle, most clearly when newly formed mRNA have been accumulated and (vi) the effect of iAA is not cumulative with that of a LD shift; that of morphactin is not, or only slightly, improved by a LD shift.  相似文献   

16.
A. Lüttke  S. Bonotto 《Planta》1981,153(6):536-542
Chloroplast DNA (cpDNA) distribution in the giant unicellular, uninucleate alga Acetabularia mediterranea was analyzed with the DNA-specific fluorochrome 4'6-diamidino-2-phenylindole (DAPI) at various stages of the cell cycle. The number of chloroplasts exhibiting DNA/DAPI fluorescence changes during the cell's developmental cycle: (1) all chloroplasts in germlings contain DNA; (2) the number of plastids with DNA declines during polar growth of the vegetative cell; (3) it increases again prior to the transition from the vegetative to the generative phase; (4) several nucleoids of low fluorescence intensity are present in the chloroplasts of the gametes. The temporal distribution of the number of chloroplasts with DNA appears to be linked to the different mode of chloroplast division and growth during the various stages of development. The chloroplast cycle in relation to the cell cycle is discussed.Abbreviations cpDNA chloroplast DNA - DAPI 4,6-diamidino-2-phenylindole  相似文献   

17.
Abstract. To study whether an electrical potential difference exists across the nuclear envelope or inner nuclear membrane of plant cells, the authors have used an optical probe of membrane potential, the cationic fluorescent dye, DiOC6(3) (MW = 572.5). This dye was microinjected into the nucleoplasm of isolated Acetabularia nuclei (which are still surrounded by a thin layer of cytoplasm) and its subnuclear localization visualized by fluorescence microscopy. Striking differences, which seemed to be correlated with the developmental stage of the isolated nucleus, were observed. In nuclei isolated from cells at the stage of early cap stage formation, the dye was restricted to the nuclear envelope. In nuclei isolated from cells with intermediate or fully developed caps, there was increased nucleoplasmic staining, and the staining of the envelope was frequently diminished or abolished. In all nuclei, the dye remained within the nucleus after injection. Cytoplasmic staining was only observed when nuclei isolated from cells at the stage of early cap formation were incubated in a hyper- or hypo-tonic medium. Various ionophores, injected before the dye into the nucleoplasm, had no effect on the subsequent nuclear localization of DiOC6(3), although they did rapidly induce nucleolar condensation in nuclei isolated from cells at the stage of early cap formation. The results suggested that the electrical properties of Acetabularia nuclear envelopes or inner nuclear membranes change during cell maturation. Furthermore, the retention of the dye in the nucleoplasm under isotonic conditions indicated that the nuclear pores were not open channels for molecules of this size.  相似文献   

18.
Afin d'apporter des arguments supplémentaires à?hypothese selon laquelle les rhythms circadiens sont impliqués dans la morphogénèse, des expériences ont été réalisées de manière a mettre en évidence la relation éventuelle de dépendance entre le moment (dans le cycle de 24 heures) où commence le traitement et ? effet (1) de la morphactine, un inhibiteur compétitif de ?'auxine et (2) de ? auxine (IAA).

Les résultats ont montré que (1) ? effet inhibiteur de la morphactine varie considérablement selon le moment auquel le traitement a commencé, plusieurs semaines avant ? expression morphogénétique; (2) le maximum d'inhibition change avec le stade de développement et le degré d'inhibition diminue avec le temps; (3) ?'IAA accélerè la formation du chapeau lorsque le traitement a commencé pendant la phase de croissance rapide des algues; ? effet depend du moment (du cycle de 24 heures) auquel il a commencé son effet diminue au cours du temps; (4) lorsque le traitement a commencé avec des algues plus petites que les precédéntes, il exerce un effet transitoirement inhibiteur qui dépend du moment du cycle de 24 heures auquel il a commence; (5) les fragments anucléés aussi répondent différentiellement à un traitement à ? IAA commencé a différents moments du cycle de 24 heures; ? effet est plus net quand des mRNA ont été accumulés; (6) ? effet de ? IAA n'est pas cumulé a celui d'une perturbation du cycle L-D; celui de la morphactine n'est pas modifyé ou est légérement amélioré par une perturbation du cycle L-D.

Mots clefs–Acetabularia, rhymes circadiens, morphogénèse, auxine, morphactine.

In order to support the hypothesis that circadian rhythms are implicated in cap formation, experiments were undertaken on the possible time-dependency of the effects of (a) a competitive inhibitor of auxins, morphactin and (b) of auxin (IAA). It was found that: (i) the inhibitory effect of morphactin varies dramatically with the time at which the several weeks' treatment was first begun; (ii) the maximum inhibition varies with development and decreases with time; (iii) IAA accelerates cap formation when the algae are submitted to IAA during the exponential growth phase; the effect is time dependent and decreases with time; (iv) IAA first applied on smaller algae has a transient inhibitory effect which is time dependent; (v) anucleate fragments also respond differentially to an IAA treatment begun at several times in the 24-hr cycle, most clearly when newly formed mRNA have been accumulated and (vi) the effect of iAA is not cumulative with that of a LD shift; that of morphactin is not, or only slightly, improved by a LD shift.  相似文献   

19.
We characterized vegetative development in two inbred cell lines of Acetabularia acetabulum (L.) Silva. Cell growth occurred at the apex and by elongation of older interwhorls throughout vegetative development. Although cell length and hairs per whorl increased regularly during development, interwhorl length, hair persistence on the stalk, and complexity of each whorl (degree of branching of whorl hairs) showed sharp discontinuities during development in both cell lines. The first (earliest) discontinuity, formation of a short interwhorl, was the sixth interwhorl made in all cells. Even though cell line Aa1055 was twice the height ofAa4010 when mature, cells in both lines were 0.8–1.0 cm tall after formation of the short interwhorl. The second discontinuity, increases in hair persistence on the stalk and complexity of each whorl of hairs, began shortly before cap initiation. We propose the following nomenclature: 1) that slower growth before formation of the short interwhorl be called “juvenile”; 2) that more rapid growth after formation of the short interwhorl be called “adult”; and 3) that adult growth be separated into “early” and “late” phases by the discontinuities in whorl hair characteristics. The proposed developmental phases (juvenile, early adult, and late adult) are temporally sequential and spatially stacked.  相似文献   

20.
The circadian rhythm of Neurospora crassa can be seen as a conidiation rhythm that produces concentric rings of bands (conidiating regions) alternating with interbands (non-conidiating regions) on the surface of an agar medium. To follow quantitatively this rhythm, densitometric analysis, gravimetric procedures, and video microscopy were employed. The circadian behavior of N. crassa is commonly monitored by cultivation in race tubes; in this work we report different growth kinetics during cultivation in conventional Petri dish cultures. Two different growth parameters were measured: total colony mass (true growth rate) and distance (colony radial expansion or hyphal elongation). Determinations of cellular mass revealed a dramatic circadian oscillation with a marked drop in growth rate during new interband formation followed by a sharp increase during the development of a new conidiation band. On the other hand, we found that the radial expansion of the colony previously reported to decrease periodically seemed unaffected by the circadian clock. Densitometric analysis showed no initial difference in the expanding margin of the colony, independent of whether that area was destined to be a band or an interband. The band areas increased rapidly in density for about 15 h whereas the interband areas maintained an equally rapid rate of increase for only 6h. The density of band areas kept increasing slowly for almost 40 h, along with an increase in the amount of conidia. Video microscopy showed the importance of cytoplasmic flow in colony development with continuous forward flow to support hyphal morphogenesis and reverse flow to support an extended period of conidiogenesis. Our results indicate that the circadian system of Neurospora can be expressed at the level of cellular mass formation, not just as the developmental conidiation rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号