首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an ∼50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.  相似文献   

2.
Molecules undergo non-Brownian diffusion in the plasma membrane, but the mechanism behind this anomalous diffusion is controversial. To characterize the anomalous diffusion in the complex system of the plasma membrane and to understand its underlying mechanism, single-molecule/particle methods that allow researchers to avoid ensemble averaging have turned out to be highly effective. However, the intrinsic problems of time-averaging (resolution) and the frequency of the observations have not been explored. These would not matter for the observations of simple Brownian particles, but they do strongly affect the observation of molecules undergoing anomalous diffusion. We examined these effects on the apparent motion of molecules undergoing simple, totally confined, or hop diffusion, using Monte Carlo simulations of particles undergoing short-term confined diffusion within a compartment and long-term hop diffusion between these compartments, explicitly including the effects of time-averaging during a single frame of the camera (exposure time) and the frequency of observations (frame rate). The intricate relationships of these time-related experimental parameters with the intrinsic diffusion parameters have been clarified, which indicated that by systematically varying the frame time and rate, the anomalous diffusion can be clearly detected and characterized. Based on these results, single-particle tracking of transferrin receptor in the plasma membrane of live PtK2 cells were carried out, varying the frame time between 0.025 and 33 ms (0.03-40 kHz), which revealed the hop diffusion of the receptor between 47-nm (average) compartments with an average residency time of 1.7 ms, with the aid of single fluorescent-molecule video imaging.  相似文献   

3.
Three-dimensional images of the undercoat structure on the cytoplasmic surface of the upper cell membrane of normal rat kidney fibroblast (NRK) cells and fetal rat skin keratinocytes were reconstructed by electron tomography, with 0.85-nm-thick consecutive sections made approximately 100 nm from the cytoplasmic surface using rapidly frozen, deeply etched, platinum-replicated plasma membranes. The membrane skeleton (MSK) primarily consists of actin filaments and associated proteins. The MSK covers the entire cytoplasmic surface and is closely linked to clathrin-coated pits and caveolae. The actin filaments that are closely apposed to the cytoplasmic surface of the plasma membrane (within 10.2 nm) are likely to form the boundaries of the membrane compartments responsible for the temporary confinement of membrane molecules, thus partitioning the plasma membrane with regard to their lateral diffusion. The distribution of the MSK mesh size as determined by electron tomography and that of the compartment size as determined from high speed single-particle tracking of phospholipid diffusion agree well in both cell types, supporting the MSK fence and MSK-anchored protein picket models.  相似文献   

4.
Plasma membrane compartments, delimited by transmembrane proteins anchored to the membrane skeleton (anchored-protein picket model), would provide the membrane with fundamental mosaicism because they would affect the movement of practically all molecules incorporated in the cell membrane. Understanding such basic compartmentalized structures of the cell membrane is critical for further studies of a variety of membrane functions. Here, using both high temporal-resolution single particle tracking and single fluorescent molecule video imaging of an unsaturated phospholipid, DOPE, we found that plasma membrane compartments generally exist in various cell types, including CHO, HEPA-OVA, PtK2, FRSK, HEK293, HeLa, T24 (ECV304), and NRK cells. The compartment size varies from 30 to 230 nm, whereas the average hop rate of DOPE crossing the boundaries between two adjacent compartments ranges between 1 and 17 ms. The probability of passing a compartment barrier when DOPE is already at the boundary is also cell-type dependent, with an overall variation by a factor of approximately 7. These results strongly indicate the necessity for the paradigm shift of the concept on the plasma membrane: from the two-dimensional fluid continuum model to the compartmentalized membrane model in which its constituent molecules undergo hop diffusion over the compartments.  相似文献   

5.
Phospholipids undergo hop diffusion in compartmentalized cell membrane   总被引:1,自引:0,他引:1  
The diffusion rate of lipids in the cell membrane is reduced by a factor of 5-100 from that in artificial bilayers. This slowing mechanism has puzzled cell biologists for the last 25 yr. Here we address this issue by studying the movement of unsaturated phospholipids in rat kidney fibroblasts at the single molecule level at the temporal resolution of 25 micros. The cell membrane was found to be compartmentalized: phospholipids are confined within 230-nm-diameter (phi) compartments for 11 ms on average before hopping to adjacent compartments. These 230-nm compartments exist within greater 750-nm-phi compartments where these phospholipids are confined for 0.33 s on average. The diffusion rate within 230-nm compartments is 5.4 microm2/s, which is nearly as fast as that in large unilamellar vesicles, indicating that the diffusion in the cell membrane is reduced not because diffusion per se is slow, but because the cell membrane is compartmentalized with regard to lateral diffusion of phospholipids. Such compartmentalization depends on the actin-based membrane skeleton, but not on the extracellular matrix, extracellular domains of membrane proteins, or cholesterol-enriched rafts. We propose that various transmembrane proteins anchored to the actin-based membrane skeleton meshwork act as rows of pickets that temporarily confine phospholipids.  相似文献   

6.
In single-particle tracking experiments, the diffusion coefficient D may be measured from the trajectory of an individual particle in the cell membrane. The statistical distribution of single-trajectory diffusion coefficients is examined by Monte Carlo calculations. The width of this distribution may be useful as a measure of the heterogeneity of the membrane and as a test of models of hindered diffusion in the membrane. For some models, the distribution of the short-range diffusion coefficient is much narrower than the observed distribution for proteins diffusing in cell membranes. To aid in the analysis of single-particle tracking measurements, the distribution of D is examined for various definitions of D and for various trajectory lengths.  相似文献   

7.
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.  相似文献   

8.
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin1A receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin1A receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin1A receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin1A receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.  相似文献   

9.
10.

Background

The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs.

Results

Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans.

Conclusion

Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.  相似文献   

11.
《The Journal of cell biology》1994,125(6):1251-1264
Movements of transferrin and alpha 2-macroglobulin receptor molecules in the plasma membrane of cultured normal rat kidney (NRK) fibroblastic cells were investigated by video-enhanced contrast optical microscopy with 1.8 nm spatial precision and 33 ms temporal resolution by labeling the receptors with the ligand-coated nanometer-sized colloidal gold particles. For both receptor species, most of the movement trajectories are of the confined diffusion type, within domains of approximately 0.25 microns2 (500-700 nm in diagonal length). Movement within the domains is random with a diffusion coefficient approximately 10(-9) cm2/s, which is consistent with that expected for free Brownian diffusion of proteins in the plasma membrane. The receptor molecules move from one domain to one of the adjacent domains at an average frequency of 0.034 s-1 (the residence time within a domain approximately 29 s), indicating that the plasma membrane is compartmentalized for diffusion of membrane receptors and that long- range diffusion is the result of successive intercompartmental jumps. The macroscopic diffusion coefficients for these two receptor molecules calculated on the basis of the compartment size and the intercompartmental jump rate are approximately 2.4 x 10(-11) cm2/s, which is consistent with those determined by averaging the long-term movements of many particles. Partial destruction of the cytoskeleton decreased the confined diffusion mode, increased the simple diffusion mode, and induced the directed diffusion (transport) mode. These results suggest that the boundaries between compartments are made of dynamically fluctuating membrane skeletons (membrane-skeleton fence model).  相似文献   

12.
The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed “hop diffusion”) for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.  相似文献   

13.
The collision coupling model describes interactions between receptors and G-proteins as first requiring the molecules to find each other by diffusion. A variety of experimental data on G-protein activation have been interpreted as suggesting (or not) the compartmentalization of receptors and/or G-proteins in addition to a collision coupling mechanism. In this work, we use a mathematical model of G-protein activation via collision coupling but without compartmentalization to demonstrate that these disparate observations do not imply the existence of such compartments. In experiments with GTP analogs (commonly GTPγS), the extent of G-protein activation is predicted to be a function of both receptor number and the rate of GTP analog hydrolysis. The sensitivity of G-protein activation to receptor number is shown to be dependent upon the assay used, with the sensitivity of phosphate production assays (GTPase) >GTPγS-binding assays >cAMP inhibition assays. Finally, the amount of competition or crosstalk between receptor species activating the same type of G-proteins is predicted to depend on receptor and G-protein number, but in some (common) experimental regimes this dependence is expected to be minimal. Taken together, these observations suggest that the collision coupling model, without compartments of receptors and/or G-proteins, is sufficient to explain a variety of observations in literature data.  相似文献   

14.
In mammalian cells, inflammation is mainly mediated by the binding of tumor necrosis factor alpha to tumor necrosis factor receptor 1. In this study, we investigated lateral dynamics of TNF-R1 before and after ligand binding using high-density single-particle tracking in combination with photoactivated localization microscopy. Our single-molecule data indicates the presence of tumor necrosis factor receptor 1 with different mobilities in the plasma membrane, suggesting different molecular organizations. Cholesterol depletion led to a decrease of slow receptor species and a strong increase in the average diffusion coefficient. Moreover, as a consequence of tumor necrosis factor-alpha treatment, the mean diffusion coefficient moderately increased while its distribution narrowed. Based on our observation, we propose a refined mechanism on the structural arrangement and activation of tumor necrosis factor receptor 1 in the plasma membrane.  相似文献   

15.
The dynamics of biomolecules in the plasma membrane is of fundamental importance to understanding cellular processes. Cellular signaling often starts with extracellular ligand binding to a membrane receptor, which then transduces an intracellular signal. Ligand binding and receptor-complex activation often involve a complex rearrangement of proteins in the membrane, which results in changes in diffusion properties. Two widely used methods to characterize biomolecular diffusion are single-particle tracking (SPT) and imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS). Here, we compare the results of recovered diffusion coefficients and mean-square displacements of the two methods by simulations of free, domain-confined, or meshwork diffusion. We introduce, to our knowledge, a new method for the determination of confinement radii from ITIR-FCS data. We further establish and demonstrate simultaneous SPT/ITIR-FCS for direct comparison within living cells. Finally, we compare the results obtained by SPT and ITIR-FCS for the receptor tyrosine kinase MET. Our results show that SPT and ITIR-FCS yield complementary information on diffusion properties of biomolecules in cell membranes.  相似文献   

16.
Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the micro -opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients.  相似文献   

17.
Subcellular fractionation of human neutrophils on linear sucrose density gradients was utilized to test the hypothesis that priming regulates the subcellular and sub-plasma membrane distribution of neutrophil G-protein subunits, G(ialpha2) and G(ialpha3), N-formyl peptide receptor, Lyn kinase and phospholipase C(beta2). G(ialpha2), but not G(ialpha3), moved from a lighter to a higher density plasma membrane fraction. Unoccupied N-formyl peptide receptors were found throughout the plasma membrane fractions and this distribution did not change with priming. In unprimed cells G(ialpha2) and its effector, phospholipase C(beta2), were segregated in different membrane compartments; priming caused G(ialpha2) to move to the compartment in which phospholipase C(beta2) resided. Thus, an important component of the mechanism of priming may involve regulation of the location of G-proteins and effector molecules in plasma membrane compartments where their abilities to couple may be enhanced.  相似文献   

18.
Li D  Xiong J  Qu A  Xu T 《Biophysical journal》2004,87(3):1991-2001
Deconvolution wide-field fluorescence microscopy and single-particle tracking were used to study the three-dimensional mobility of single secretory granules in live PC12 cells. Acridine orange-labeled granules were found to travel primarily in random and caged diffusion, whereas only a small fraction of granules traveled in directed fashion. High K(+) stimulation increased significantly the percentage of granules traveling in directed fashion. By dividing granules into the near-membrane group (within 1 microm from the plasma membrane) and cytosolic group, we have revealed significant differences between these two groups of granules in their mobility. The mobility of these two groups of granules is also differentially affected by disruption of F-actin, suggesting different mechanisms are involved in the motion of the two groups of granules. Our results demonstrate that combined deconvolution and single-particle tracking may find its application in three-dimensional tracking of long-term motion of granules and elucidating the underlying mechanisms.  相似文献   

19.
《Biophysical journal》2020,118(6):1489-1501
T cell receptor phosphorylation by Lck is an essential step in T cell activation. It is known that the conformational states of Lck control enzymatic activity; however, the underlying principles of how Lck finds its substrate over the plasma membrane remain elusive. Here, single-particle tracking is paired with photoactivatable localization microscopy to observe the diffusive modes of Lck in the plasma membrane. Individual Lck molecules switched between free and confined diffusion in both resting and stimulated T cells. Lck mutants locked in the open conformation were more confined than Lck mutants in the closed conformation. Further confinement of kinase-dead versions of Lck suggests that Lck confinement was not caused by phosphorylated substrates. Our data support a model in which confined diffusion of open Lck results in high local phosphorylation rates, and inactive, closed Lck diffuses freely to enable long-range distribution over the plasma membrane.  相似文献   

20.
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号