首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
《Insect Biochemistry》1987,17(4):619-624
Electrophoretic analysis of alkaline phosphatase from the integument during development, reveals two bands of enzyme activity. One corresponding to phosphatase activity during pupation and just prior to eclosion and the other during the middle of the pupal stages. On the contrary in the haemolymph there is one band on enzyme activity through all the developmental stages. The haemolymph alkaline phosphatase band does not comigrate with any integumental enzyme band. The developmental profile of the integumental alkaline phosphatase activity has also been compared to that of the haemolymph. It was found that the pattern of activity is completely different. In the integument, two peaks of enzyme activity were found: one just prior to pupation and the other during eclosion. These two peaks do not coincide to that of haemolymph alkaline phosphatase activity. The pH optimum for both enzyme forms of third instar larvae, although broad especially for haemolymph form, was clearly in the alkaline range, with a peak at pH 8.5–9.0. The two isozymes have different affinities for the substrate tyrosine-O-phosphate. Tyrosine-O-phosphate is the preferred substrate for the integumental enzyme form with a Km of 0.4 mM. We suggest that alkaline phosphates from the integument is specific for the hydrolysis of tyrosine-O-phosphate.  相似文献   

2.
Adsorptive endocytosis of five different lysosomal enzymes from various human and non-human sources was susceptible to inhibition by mannose and l-fucose, methyl α-d-mannoside, α-anomeric p-nitrophenyl glycosides of mannose and l-fucose, mannose 6-phosphate and fructose 1-phosphate. A few exceptions from this general scheme were observed for particular enzymes, particularly for β-glucuronidase from human urine. The inhibition of α-N-acetylglucosaminidase endocytosis by mannose, p-nitrophenyl α-d-mannoside and mannose 6-phosphate was shown to be competitive. The loss of endocytosis after alkaline phosphatase treatment of lysosomal enzymes supports the hypothesis that the phosphorylated sugars compete with a phosphorylated carbohydrate on the enzymes for binding to the cell-surface receptors [Kaplan, Achord & Sly (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2026–2030]. Endocytosis of `low-uptake' forms of α-N-acetylglucosaminidase and α-mannosidase was likewise susceptible to inhibition by sugar phosphates and by alkaline phosphatase treatment, suggesting that `low-uptake' forms are either contaminated with `high-uptake' forms or are internalized via the same route as `high-uptake' forms. The existence of an alternative route for adsorptive endocytosis of lysosomal enzymes is indicated by the unaffected adsorptive endocytosis of rat liver β-glucuronidase in the presence of phosphorylated sugars and after treatment with alkaline phosphatase.  相似文献   

3.
For a purified preparation of the soluble form of phosphatidate phosphohydrolase (EC 3.1.3.4) from guinea pig cerebral cortex, 1-O-alkyl-rac-glycerol 3-phosphate was found to be accepted as a substrate. This substrate analog was tritium-labeled in order to serve in a rapid sensitive assay for the enzyme, in which labeled 1-alkyl glycerol is released. Heat denaturation and enzyme activity dependence on pH indicated that 1-O-alkyl-rac-glycerol 3-phosphate phosphohydrolase and phosphatidate phosphohydrolase activities in the preparation are attributable to the same enzyme. 1-O-Alkyl-rac-glycerol 3-phosphate was hydrolyzed with a Vmax of 1.7 nmol min?1 mg?1 of protein and a Km of 270 μm.  相似文献   

4.
1. By digitonin lysis of penicillin spheroplasts of Escherichia coli a particulate fraction P1 was previously obtained that supported the sustained synthesis of alkaline phosphatase when supplied with amino acids, nucleotide triphosphates and other cofactors. This P1 fraction, when subjected to mild ultrasonic treatment in the presence of sucrose and Mg2+, yielded the P1(S) fraction, consisting of integrated particulate subcellular particles containing DNA and RNA. 2. The P1(S) fraction from E. coli K10 wild type (R+1R+2P+) grown under repressed conditions supported the immediate synthesis of alkaline phosphatase in vitro. The synthesis occurred in phases. The first was followed by a lag, and then there was a linear rapid phase that continued for at least 3hr. Actinomycin D inhibited the appearance of the second phase. It was concluded that the particles are programmed to synthesize enzyme even when prepared from repressed cells, and therefore that synthesis of the specific messenger RNA for alkaline phosphatase in vivo was not inhibited when the bacteria were grown in an excess of inorganic phosphate. 3. Phosphate inhibited synthesis of enzyme to the same extent with the P1(S) fractions of two constitutive strains as with the P1(S) fraction of the wild-type strain. 4. Inorganic phosphate inhibited amino acid incorporation with the P1(S) fraction and also inhibited enzyme synthesis in vitro. The effect on amino acid incorporation could be partially overcome by adding Mn2+ to the incubation mixtures. However, Mn2+ inhibited the synthesis of alkaline phosphatase. Also, inhibition of the incorporation of [32P]CTP into RNA was overcome by Mn2+. The effect of phosphate on amino acid uptake was most probably due to a phosphorolysis of RNA by polynucleotide phosphorylase, also present in the P1(S) fraction. This phosphorolysis may be responsible for the instability of messenger RNA in vitro and in vivo. 5. Phosphate also specifically inhibited the formation of alkaline phosphatase, since it did not affect markedly the induced formation of β-galactosidase by the same P1(S) fraction. The specific effect is attributed to the prevention of formation of the enzymically active dimer from precursors, a Zn2+-dependent reaction. It is suggested that the repression of the synthesis of alkaline phosphatase in vivo in the wild-type strain was the sum of these two effects.  相似文献   

5.
Extracts of mature seeds of Cuscuta reflexa were examined for any deficiency in key enzymes. The activities of malate dehydrogenase, β-amylase and fructose 1,6-diphosphate aldolase exceeded 5.0 μmol substrate/min/g, while those of starch phosphorylase, α-amylase, acid phosphatase, phosphogluconate dehydrogenase (decarboxylating), aspartate aminotransferase, glucose 6-phosphate dehydrogenase, fructose 1,6-diphosphatase and alanine aminotransferase fell within the range 1 to 5 μmol/min/g and hexokinase, isocitrate dehydrogenase and alkaline phosphatase were below 1 μmol substrate/min/g seed powder. No activity of the following were found: acid invertase, alkaline invertase, phytase and glutamate dehydrogenase. Some of these observations were made also for seeds of Cuscuta campestris and Cuscuta indicora.  相似文献   

6.
7.
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the -amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This -amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation.  相似文献   

8.
A Mg2+-dependent, alkaline phosphatase has been isolated from mature pollen of Lilium longiflorum Thunb., cv. Ace and partially purified. It hydrolyzes 1l- and 1d-myo-inositol 1-phosphate, myo-inositol 2-phosphate, and β-glycerophosphate at rates decreasing in the order named. The affinity of the enzyme for 1l- and 1d-myo-inositol 1-phosphate is approximately 10-fold greater than its affinity for myo-inositol 2-phosphate. Little or no activity is found with phytate, d-glucose 6-phosphate, d-glucose 1-phosphate, d-fructose 1-phosphate, d-fructose 6-phosphate, d-mannose 6-phosphate, or p-nitrophenyl phosphate. 3-Phosphosphoglycerate is a weak competitive inhibitor. myo-Inositol does not inhibit the reaction. Optimal activity is obtained at pH 8.5 and requires the presence of Mg2+. At 4 millimolar, Co2+, Fe2+ or Mn2+ are less effective. Substantial inhibition is obtained with 0.25 molar Li+. With β-glycerophosphate as substrate the Km is 0.06 millimolar and the reaction remains linear at least 2 hours. In 0.1 molar Tris, β-glycerophosphate yields equivalent amounts of glycerol and inorganic phosphate, evidence that transphosphorylation does not occur.  相似文献   

9.
Mutants constitutive for the novel outer membrane protein Ic (e or E) contained a recently discovered binding protein for sn-glycerol-3-phosphate. The corresponding parental strains missing the outer membrane protein Ic (e, E) were negative or strongly reduced in the synthesis of the binding protein. In addition, strains that were previously isolated as mutants constitutive for the sn-glycerol-3-phosphate transport system (ugp+ mutants) and that produced the novel periplasmic proteins GP1 to GP4 also synthesized a new outer membrane protein with the same electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels as protein Ic. Screening of different ugp+ mutants revealed the existence of three types in respect to the four novel periplasmic proteins GP1, -2, -3, and -4: (i) one containing all four proteins; (ii) one containing only proteins GP1, -2, and -3; (iii) one containing only proteins GP1, -2, and -4. In confirmation of the data presented in the accompanying paper by Tommassen and Lugtenberg (J. Bacteriol. 143:151–157, 1980), we found that purified GP1 is identical to alkaline phosphatase, whereas purified GP3 has binding activity of inorganic phosphate and is identical to the phosphate-binding protein. Moreover, growth conditions that lead in a wild-type strain to the derepression of alkaline phosphatase synthesis also derepressed the synthesis of the sn-glycerol-3-phosphate-binding protein as well as the corresponding transport system. Thus, the new sn-glycerol-3-phosphate transport system is part of the alkaline phosphatase regulatory system.  相似文献   

10.
In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405 nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)3 appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the Kcat/Km term. VO(anc)2 is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na3VO4. Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo.  相似文献   

11.
1. The stability of the tetrameric form of Escherichia coli alkaline phosphatase was examined by analytical ultracentrifugation. 2. The stopped-flow technique was used to study the hydrolysis of nitrophenyl phosphates by the alkaline phosphatase tetramer at pH7.5 and 8.3. In both cases transient product formation was observed before the steady state was attained. Both transients consisted of the liberation of 1mol of nitrophenol/2mol of enzyme subunits within the dead-time of the apparatus. The steady-state rates were identical with those observed with the dimer under the same conditions. 3. The binding of 2-hydroxy-5-nitrobenzyl phosphonate to the alkaline phosphatase tetramer was studied by the temperature-jump technique. The self-association of two dimers to form the tetramer is linked to a conformation change within the dimer. This accounts for the differences between the transient phases in the reactions of the dimer and the tetramer with substrate. 4. Addition of Pi to the alkaline phosphatase tetramer caused it to dissociate into dimers. The tetramer is unable to bind this ligand. It is suggested that the tetramer undergoes a compulsory dissociation before the completion of its first turnover with substrate. 5. On the basis of these findings a mechanism is proposed for the involvement of the alkaline phosphatase tetramer in the physiology of E. coli.  相似文献   

12.
A purification procedure, which included ethanol treatment as a step for dissociating the large molecular forms of type I phosphoprotein phosphatase, was employed for the studies of the alkaline phosphatase and phosphoprotein phosphatase activities in bovine brain, heart, spleen, kidney, and uterus, rabbit skeletal muscle and liver, and lobster tail muscle. The results indicate that the major phosphoprotein phosphatase (phosphorylase a as a substrate) and alkaline phosphatase (p-nitrophenyl phosphate as a substrate; Mg2+ and dithiothreitol as activators) activities in the extracts of all tissues studied were copurified as an entity of Mr = 35,000. The purified enzymes from different tissues exhibit similar physical and catalytic properties with respect to either the phosphoprotein phosphatase or the alkaline phosphatase activity. The present findings indicate that (a) the Mr = 35,000 species, which represents a catalytic entity of the large molecular forms of type I phosphoprotein phosphatase, is widespread in animal tissues, indicating that it is a multifunctional phosphatase; (b) the association of type I alkaline phosphatase activity with type I phosphoprotein phosphatase is a general phenomenon.  相似文献   

13.
The acid phosphatase of an atypical Citrobacter sp. was purified in two isoforms, designated CPI and CPII, which had different Km values for glycerol 1-phosphate and glycerol 2-phosphate The enzyme was not inhibited by the end-product glycerol. Enzyme activity was increased in the presence of phosphate acceptor molecules having free hydroxyl groups (glycerol, methanol, ethanol). 31P-nuclear magnetic resonance spectroscopy indicated transfer of the liberated phosphate onto the alcohol, with the de novo production of (e.g.) glycerol 1-phosphate by enzyme supplemented with phosphomonoester substrate and glycerol.  相似文献   

14.
The complexes (Tpms)VCl2(DMF) (1), and (Tpms)VOCl(DMF) (2), have been synthesized and characterized. Complex 2 has also been structurally characterized via X-ray diffractometry. The vanadium(IV) center possesses a square pyramidal/distorted octahedral geometry with a facially coordinating Tpms ligand in a κ3-N,N,O coordination mode. The complex is the first structurally characterized example of a vanadium(IV) complex with Tpms. Complex 2 shows catalytic activity towards oxidation of 3,5-di-tert-butyl catechol and also exhibits phosphatase inhibition characteristics on alkaline phosphatase. Tpms = trispyrazolylmethanesulfonate; DMF = N,N-dimethylformamide.  相似文献   

15.
Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.  相似文献   

16.
A bienzyme electrochemical probe has been assembled and used to monitor the inhibition of the enzyme protein phosphatase-2A (PP2A) by okadaic acid (OA), taking advantage of the particular characteristics of a biochemical pathway in which PP2A is involved. This enzyme has significant activity toward glycogen phosphorylase a (PHOS a), which in turn catalyzes the conversion of glycogen to glucose-1-phosphate (G-1-P). In addition, PP2A is strongly inhibited by OA and its derivatives. Due to this combination of properties, PP2A was employed to develop an assay system involving a preliminary phase of off-line enzymatic incubations (OA/PP2A, PP2A/PHOS a, PHOS a/glycogen + phosphate). This off-line step was followed by the electrochemical detection of H2O2, which is the final product of two sequential enzymatic reactions: G-1-P with alkaline phosphatase (AP) producing glucose, then glucose with glucose oxidase (GOD) producing hydrogen peroxide. These two enzymes were coimmobilized on a nylon net membrane that was placed over an H2O2 platinum probe inserted into a flow injection analysis (FIA) system. During a first phase of the study, all analytical parameters were optimized. During a subsequent phase, the inhibition of PP2A enzyme by OA was evaluated. The calibration of the system shows a working range for detection of OA between 30 and 250 pg ml−1. The total analysis time is the sum of 50 min for the off-line enzymatic incubations and 4 min for the biosensor response.  相似文献   

17.
ABSTRACT. Inhibition, inactivation, pH, and kinetic studies using both homogenates and purified lysosomal fractions of Paramecium caudalum and of P. tetraurelia were carried out to examine the lysosomal acid phosphatase (AcPase) and its relationship to p-nitrophenylphosphatase (pNPPase), glucose-6-phosphatase (G6Pase), and 5′-nucleotidase (AMPase). The results generally support the idea that Paramecium cells contain a distinct lysosomal AcPase with a broad substrate specificity. The hydrolysis of glucose-6-phosphate (G6P) and adenosine 5′-monophosphate (AMP) was shown to be due to this enzyme, suggesting that true G6Pase and AMPase may be lacking in these two species; however, some hydrolysis of AMP at pH 7.5 catalyzed by an unknown soluble enzyme distinct from alkaline phosphatase and Na+-K+-ATPase was observed. Since the hydrolysis of p-nitrophenylphosphate (pNPP) at acid pH was also shown to be due to AcPase alone, pNPPase could be used as a rapid assay for Paramecium AcPase. At an alkaline pH, however, this activity was catalyzed by an alkaline phosphatase located in the cytosol fraction. P. caudatum AcPase was shown to have kinetic properties similar to those of purified rat liver and human prostatic AcPase and to have relative substrate affinities in the order of G6P < β-glycerophosphate < pNPP < AMP. These different substrate affinities might account for the observed differences in the inhibition of the four lysosomal activities by NaF, L(+)-tartrate, and molybdate, all of which inhibited the hydrolysis of G6P, β-glycerophosphate, and pNPP competitively, but which exhibited a noncompetitive inhibition of a mixed type with the hydrolysis of AMP.  相似文献   

18.
Design, synthesis and characterization of new trinary Benzocoumarin-Thiazoles-Azomethine derivatives having three bioactive scaffolds in a single structural unit were carried out. The newly synthesized molecules were investigated for the inhibitory activity on human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP) isozymes. All the tested compounds exhibited the potent inhibition profile on both isozymes of alkaline phosphatase i.e., h-TNAP and h-IAP. Molecular docking studies were performed to explore the putative binding mode of interactions of selective inhibitors. Moreover, the synthesized derivatives were evaluated against cervical cancer cell line, HeLa and a few compounds exhibited significant inhibition in the range of 21.0–69.7%. The derivatives can be potential and selective alkaline phosphatase inhibitors for future studies.  相似文献   

19.
A relatively simple, very sensitive bioluminescence-enhanced detection system for protein blotting and nucleic acid hybridization is described. The method utilizes antibodies conjugated with alkaline phosphatase or nucleotide probes complexed with alkaline phosphatase. Then the alkaline phosphatase takes part in a reaction by releasing D -luciferin (Photinus pyralis) from D -luciferin-O-phosphate. Liberated D -luciferin reacts with luciferase, ATP and oxygen under light emission. Light is measured using the Argus-100 a photon counting camera system or photographic films. Bound alkaline phosphatase conjugated antibodies or hybridized nucleotide probes can be visualized. The limit of detection is at present 5 to 50 fg of protein (IgG), corresponding, for example to 30 to 300 × 10?21 mol. This means a much higher sensitivity of the detection system in comparison to systems used at present. Experiments concerning nucleic acid hybridization and visualization of the emitted light by a photon counting camera (Argus-100) are under investigation.  相似文献   

20.
Rat intestinal alkaline phosphatase is a dimeric enzyme with identical subunits and thus possesses two presumably identical active sites. Binding studies with Pi and l-phenylalanine and pre-steady-state “burst” titrations confirm the existence of two active sites per molecule of enzyme. The sites appear to be nonequivalent with respect to Pi binding, both at low pH, where an enzyme (E)-Pi covalent complex is formed, and at high Pi, where an E-Pi noncovalent complex predominates. The binding affinity of the first site is 100-fold greater than that of the second, i.e., there is negative cooperativity. The Ki value for competitive inhibition of substrate hydrolysis by Pi corresponds to the higher affinity site. The negative cooperativity appears not to be an artifact resulting from contaminating Pi in the purified enzyme preparation. l-Phenylalanine does not bind to the enzyme unless Pi is present, as expected from the previously proposed mechanism of uncompetitive inhibition by the amino acid. No negative cooperativity is seen in l-phenylalanine binding, but the number of moles of amino acid bound at saturation depends on the degree of saturation by Pi The enzyme is also inhibited uncompetitively by NADH, which can compete with l-phenylalanine for the same site on alkaline phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号