首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-windows based microscopy image processing package (Xmipp) is a specialized suit of image processing programs, primarily aimed at obtaining the 3D reconstruction of biological specimens from large sets of projection images acquired by transmission electron microscopy. This public-domain software package was introduced to the electron microscopy field eight years ago, and since then it has changed drastically. New methodologies for the analysis of single-particle projection images have been added to classification, contrast transfer function correction, angular assignment, 3D reconstruction, reconstruction of crystals, etc. In addition, the package has been extended with functionalities for 2D crystal and electron tomography data. Furthermore, its current implementation in C++, with a highly modular design of well-documented data structures and functions, offers a convenient environment for the development of novel algorithms. In this paper, we present a general overview of a new generation of Xmipp that has been re-engineered to maximize flexibility and modularity, potentially facilitating its integration in future standardization efforts in the field. Moreover, by focusing on those developments that distinguish Xmipp from other packages available, we illustrate its added value to the electron microscopy community.  相似文献   

2.
电子显微三维重构技术发展与前沿   总被引:2,自引:0,他引:2  
本文对电子显微三维重构技术(也称电镜三维重构,electron microscopy 3D reconstruction)进行简要介绍,并在此基础上对该技术当前研究的发展和前沿进行综述,包括高分辨率电镜三维重构、仪器设备性能突破、自动化数据收集和处理、高性能计算技术应用、二/三维图像处理技术的发展和创新、基于三维重构图的模型计算等方面,最后对电子显微三维重构技术的未来进行了展望。  相似文献   

3.
We have developed a novel pre-embedding in situ hybridization labelling method for electron microscopy which has given much greater sensitivity and higher labelling levels than have been achieved previously, together with good ultrastructural preservation. Vibratome sections of plant tissue were labelled throughout their thickness with 1 nm gold antibodies and then silver enhanced, embedded in resin and sectioned for electron microscopy. Because the labelling extends throughout the depth of the specimen, this method permits the study of the 3D arrangement of the labelling at the electron microscope level by either stereo-pair recording, tomographic reconstruction or 3D reconstruction from serial sections. In this paper we describe the application of this method to study the organization of rDNA in pea root tissue.  相似文献   

4.
Many thin helical polymers, including bacterial pili and filamentous bacteriophage, have been seen as refractory to high-resolution studies by electron microscopy. Studies of the quaternary structure of such filaments have depended upon techniques such as modeling or X-ray fiber diffraction, given that direct visualization of the subunit organization has not been possible. We report the first image reconstruction of a filamentous virus, bacteriophage fd, by cryoelectron microscopy. Although these thin ( approximately 70 A in diameter) rather featureless filaments scatter weakly, we have been able to achieve a nominal resolution of approximately 8 A using an iterative helical reconstruction procedure. We show that two different conformations of the virus exist, and that in both states the subunits are packed differently than in conflicting models previously proposed on the basis of X-ray fiber diffraction or solid-state NMR studies. A significant fraction of the population of wild-type fd is either disordered or in multiple conformational states, while in the presence of the Y21M mutation, this heterogeneity is greatly reduced, consistent with previous observations. These results show that new computational approaches to helical reconstruction can greatly extend the ability to visualize heterogeneous protein polymers at a reasonably high resolution.  相似文献   

5.
Cryo-electron microscopy of vitreous sections   总被引:10,自引:0,他引:10  
Since the beginning of the 1980s, cryo-electron microscopy of a thin film of vitrified aqueous suspension has made it possible to observe biological particles in their native state, in the absence of the usual artefacts of dehydration and staining. Combined with 3-d reconstruction, it has become an important tool for structural molecular biology. Larger objects such as cells and tissues cannot generally be squeezed in a thin enough film. Cryo-electron microscopy of vitreous sections (CEMOVIS) provides then a solution. It requires vitrification of a sizable piece of biological material and cutting it into ultrathin sections, which are observed in the vitrified state. Each of these operations raises serious difficulties that have now been overcome. In general, the native state seen with CEMOVIS is very different from what has been seen before and it is seen in more detail. CEMOVIS will give its full potential when combined with computerized electron tomography for 3-d reconstruction.  相似文献   

6.
Single particle reconstruction using the random conical tilt data collection geometry is a robust method for the initial determination of macromolecular structures by electron microscopy. Unfortunately, the broad adoption of this powerful approach has been limited by the practical challenges inherent in manual data collection of the required pairs of matching high and low tilt images (typically 60 degrees and 0 degrees). The microscopist is obliged to keep the imaging area centered during tilting as well as to maintain accurate focus in the tilted image while minimizing the overall electron dose, a challenging and time consuming process. To help solve these problems, we have developed an automated system for the rapid acquisition of accurately aligned and focused tilt pairs. The system has been designed to minimize the dose incurred during alignment and focusing, making it useful in both negative stain and cryo-electron microscopy. The system includes a feature for montaging untilted images to ensure that all of the particles in the tilted image may be used in the reconstruction.  相似文献   

7.
A single-projection structure analysis of a bacterial outer membrane protein, OmpC, has been carried out by electron microscopy of frozen hydrated specimens. Two distinct crystal polymorphs have been observed in the frozen-hydrated samples, and projection structures of both forms have been obtained to a resolution of 13.5 A. Preliminary examination of negatively stained samples revealed the expected, trimeric appearance of pores in the OmpC specimens. Electron microscopy of unstained, frozen-hydrated OmpC reveals the trimeric pore structure with equal clarity. In addition, the overall molecular envelope of the protein is readily discerned, and a major lipid-containing domain can also be seen. Because of the small coherent patch size, mosaic disorder, and unpredictable polymorphism of the presently available specimens, three-dimensional reconstruction of frozen-hydrated OmpC has not been carried out.  相似文献   

8.
The three-dimensional structure of the large (50S) ribosomal subunit from Escherichia coli has been determined from electron micrographs of negatively stained specimens. A new method of three-dimensional reconstruction was used which combines many images of individual subunits recorded at a single high tilt angle. A prominent feature of the reconstruction is a large groove on the side of the subunit that interacts with the small ribosomal subunit. This feature is probably of functional significance as it includes the regions where the peptidyl transferase site and the binding locations of the elongation factors have been mapped previously by immunoelectron microscopy.  相似文献   

9.
The three-dimensional structure of the regular surface layer of Sporosarcina ureae has been determined to a resolution of 1.7 nm by electron microscopy and image reconstruction. The S-layer has p4 symmetry, a lattice constant of 12.9 nm, and a minimum thickness of 6.6 nm. The reconstruction reveals a distinct domain structure: a massive core, arms connecting adjacent unit cells, and spurs which make contact at the subsidiary fourfold symmetry axes. In the z-direction the domains appear to be arranged in three planes, creating two entirely different surface reliefs. The S-layer has a complex pattern of pores and gaps that are 2 to 3 nm wide. In addition, the secondary-structure composition has been determined by infrared spectroscopy: about 35% of the polypeptide appears to have a beta-structure conformation.  相似文献   

10.
Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinurus elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8A resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as alpha-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%) of the hemocyanin subunits from the European spiny lobster P.elephas and the American spiny lobster Panulirus interruptus. Comparison of the P.elephas hemocyanin electron microscopy (EM) density map with the known P.interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins. By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P.interruptus X-ray data.  相似文献   

11.
In recent years, the problem of reconstructing the connectivity in large neural circuits ("connectomics") has re-emerged as one of the main objectives of neuroscience. Classically, reconstructions of neural connectivity have been approached anatomically, using electron or light microscopy and histological tracing methods. This paper describes a statistical approach for connectivity reconstruction that relies on relatively easy-to-obtain measurements using fluorescent probes such as synaptic markers, cytoplasmic dyes, transsynaptic tracers, or activity-dependent dyes. We describe the possible design of these experiments and develop a Bayesian framework for extracting synaptic neural connectivity from such data. We show that the statistical reconstruction problem can be formulated naturally as a tractable L (1)-regularized quadratic optimization. As a concrete example, we consider a realistic hypothetical connectivity reconstruction experiment in C. elegans, a popular neuroscience model where a complete wiring diagram has been previously obtained based on long-term electron microscopy work. We show that the new statistical approach could lead to an orders of magnitude reduction in experimental effort in reconstructing the connectivity in this circuit. We further demonstrate that the spatial heterogeneity and biological variability in the connectivity matrix-not just the "average" connectivity-can also be estimated using the same method.  相似文献   

12.
Unsupported, unstained frozen-hydrated extended tails of bacteriophage T4 have been studied by cryo-electron microscopy. Their three-dimensional structure has been reconstructed after correlation and averaging of the information from different particles. While the reconstructions of hydrated tails show all the features found by conventional electron microscopy, they are characterized by an open structure. Individual subunits constituting the axial repeat cannot be outlined unambiguously, as the density connectivity is sensitive to the phase-contrast transfer function effects. In order to minimize these effects, we found that the best data set for three-dimensional reconstruction is composed of layer-lines corrected for the phase-contrast transfer function and an uncorrected equator.  相似文献   

13.
The helical filaments of the cyanide hydratase from Gloeocercospora sorghi have been reconstructed in three dimensions from freeze dried, unidirectionally shadowed specimens using iterative real-space helical reconstruction. The average power spectrum of all selected images has three clear reflections on different layer lines. The reconstruction is complicated by the fact that three possible indexing schemes are possible and reconstructions using the starting symmetries based on each of these indexing schemes converge on three-dimensional volumes which appear plausible. Because only one side is visible in shadowed specimens, it is necessary to examine the phases from a single filament by cryo-electron microscopy in order to make an unequivocal assignment of the symmetry. Because of the novel nature of the reconstruction method used here, conventional cryo-EM methods were also used to determine a second reconstruction, allowing us to make comparisons between the two. The filament is shown to have a left-handed one-start helix with D(1) symmetry, 5.46 dimers per turn and a pitch of 7.15nm. The reconstruction suggests the presence of an interaction across the groove not previously seen in nitrilase helical fibres.  相似文献   

14.
Since the foundation for the three-dimensional image reconstruction of helical objects from electron micrographs was laid more than 30 years ago, there have been sustained developments in specimen preparation, data acquisition, image analysis, and interpretation of results. However, the boxing of filaments in large numbers of images--one of the critical steps toward the reconstruction at high resolution--is still constrained by manual processing even though interactive interfaces have been built to aid the tedious and sometimes inaccurate boxing process. This article describes an accurate approach for automated detection of filamentous structures in low-contrast images acquired in defocus pairs using cryoelectron microscopy. The performance of the approach has been evaluated across various magnifications and at a series of defocus values using tobacco mosaic virus (TMV) preserved in vitreous ice as a test specimen. By integrating the proposed approach into our automated data acquisition and reconstruction system, we are now able to generate a three-dimensional map of TMV to approximately 10-A resolution within 24 h of inserting the specimen grid into the microscope.  相似文献   

15.
To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.  相似文献   

16.
Structural studies using two‐dimensional (2D) images show limitations in understanding the structure and functions of cellular organelle and protein. To overcome the difficulty, over the last few years 3D reconstruction techniques using electron microscopy have been developed at extremely high speed. In this paper, currently available 3D reconstruction techniques of electron microscopy (such as electron tomography, serial section analysis and single particle analysis) are introduced using our data as examples of the application. The 3D structure of mitochondria with the defect of mitochondrial protein in round worm, Caenorhabditis elegans, through electron tomography, the cell–cell interaction in lamina of Drosophila melanogaster by serial‐section using ultramicrotome and high‐voltage electron microscopy and a thin filament related to muscle contraction in Drosophila melanogaster were used for examples of the application. These results through 3D reconstruction reveal the structural changes in a cellular organelle and protein that had not been shown by 2D structure.  相似文献   

17.
Myosin filaments isolated from goldfish (Carassius auratus) muscle under relaxing conditions and viewed in negative stain by electron microscopy have been subjected to 3D helical reconstruction to provide details of the myosin head arrangement in relaxed muscle. Previous X-ray diffraction studies of fish muscle (plaice) myosin filaments have suggested that the heads project a long way from the filament surface rather than lying down flat and that heads in a single myosin molecule tend to interact with each other rather than with heads from adjacent molecules. Evidence has also been presented that the head tilt is away from the M-band. Here we seek to confirm these conclusions using a totally independent method. By using 3D helical reconstruction of isolated myosin filaments the known perturbation of the head array in vertebrate muscles was inevitably averaged out. The 3D reconstruction was therefore compared with the X-ray model after it too had been helically averaged. The resulting images showed the same characteristic features: heads projecting out from the filament backbone to high radius and the motor domains at higher radius and further away from the M-band than the light-chain-binding neck domains (lever arms) of the heads.  相似文献   

18.
《Zoology (Jena, Germany)》2015,118(4):221-238
Horseshoe crabs (Xiphosura) have been an object of zoological research for almost 200 years. Although some morphological work on the circulatory system has been done, the three-dimensional structure of this complex organ system has never been shown satisfactorily and some crucial questions remain unanswered. Here, the circulatory systems of juveniles of the horseshoe crab taxa Limulus polyphemus and Carcinoscorpius rotundicauda were investigated using a combination of an injection method and micro-computed tomography. Data were processed and 3D-visualized using reconstruction software. Furthermore, the heart was examined using scanning electron microscopy. Additionally, the histology of some structures was investigated via light microscopy and transmission electron microscopy. The results show the high degree of complexity of the arterial and lacunar systems of Xiphosura and provide insights into their three-dimensional structure and relationship to other organ systems such as the central nervous system. We show that the major lacunae, previously described as vessel-like – though indeed highly ramified – can clearly be distinguished from arteries in histological sections because they have no distinct walls. Similarities and differences between the xiphosuran species and arachnids are highlighted and possible phylogenetic implications and evolutionary scenarios discussed.  相似文献   

19.
Expansion microscopy (ExM) increases the effective resolving power of any microscope by expanding the sample with swellable hydrogel. Since its invention, ExM has been successfully applied to a wide range of cell, tissue, and animal samples. Still, fluorescence signal loss during polymerization and digestion limits molecular-scale imaging using ExM. Here, we report the development of label-retention ExM (LR-ExM) with a set of trifunctional anchors that not only prevent signal loss but also enable high-efficiency labeling using SNAP and CLIP tags. We have demonstrated multicolor LR-ExM for a variety of subcellular structures. Combining LR-ExM with superresolution stochastic optical reconstruction microscopy (STORM), we have achieved molecular resolution in the visualization of polyhedral lattice of clathrin-coated pits in situ.  相似文献   

20.
The three-dimensional structure of the Na,K-ATPase from electron microscopy   总被引:2,自引:0,他引:2  
The structure of Na,K-ATPase has been studied by electron microscopy and image reconstruction. A three-dimensional structure of this enzyme has been obtained to an overall resolution of 2.5 nm using data from specimens of negatively stained dimer sheets tilted through a range of angles +/- 60 degrees. The reconstruction shows a complex mass distribution consisting of ribbons of paired molecules extending approximately 6.0 nm from the cytoplasmic side of the membrane. The molecular envelope consists of a massive "body" with "lobe" and "arm" structures projecting from it. The body has a columnar shape and is tilted with respect to the plane of the membrane. The region of interaction responsible for dimer formation is located between two bodies and is clearly visible in the reconstruction. It has been identified as a segment in the amino-terminal portion of the alpha subunit. The arms that interconnect the ribbons are located close to the membrane and are most probably formed by the beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号