首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of moderate stress induced by prolonged illumination was analysed on urothelial cells of female mouse urinary bladders at ultrastructural and cytochemical levels. This study demonstrates that the urothelium responds to moderate stress with desquamation which involves two subsequent steps. The first step includes a local detachment of tight junctions and consequently the loss of the permeability barrier leading to expanded intercellular spaces among urothelial cells. During the second step, the disjunction of desmosomes accompanied by exocytosis of lysosomal enzymes (NADPase) in the intercellular space results in exfoliation of superficial cells. It is evident that moderate stress elicits an enhanced desquamation of only superficial cells by a subsequent dysfunction of first tight junctions and after that adherens-type junctions. A rapid restoration of the new tight junctions prevents a long-term malfunction of the blood-urine barrier.  相似文献   

2.
In developing mouse urinary bladder the urothelial cells respond to urine accumulation by cell detachment, i.e. desquamation. To elucidate the steps of urothelial cell detachment during embryonic development and first urine accumulation in bladder lumen, superficial and intermediate cell layers were investigated. Different electron microscopic and cytochemical methods have been used. It was possible to distinguish between an early and late events on the basis of morphology. At the beginning cell detachment involves interruption of tight junctions between neighbouring superficial cells and the formation of numerous endocytotic vesicles. Endocytotic and cup-shaped vesicles then fuse and form large parallel rows of vacuoles and multivesicular bodies in desquamating superficial cells and in the neighbouring superficial and intermediate cells. These observations clearly demonstrate the existence of specific steps during the detachment of embryonic uroepithelial cells. Apoptosis accompanies cell desquamation. Only predetermined superficial bridge cells die in an apoptotic manner.  相似文献   

3.
Small gap junction plaques are associated with tight junction strands in some cell types including hepatocytes and it is thought that they may be closely related to tight junctions and the establishment of cell polarity. In order to examine roles of gap junctions in regulating expression and structure of tight junctions, we transfected human Cx32 cDNA into immortalized mouse hepatocytes (CHST8 cells) which lack endogenous Cx32 and Cx26. Immunocytochemistry revealed that endogenous integral tight junction protein occludin was strongly localized and was colocalized with Cx32 at cell borders in transfectants, whereas neither was detected in parental cells. In Northern blots, mRNAs encoding occludin and the other integral tight junction proteins, claudin-1 and -2, were induced in the transfectants compared to parental cells. In Western blots, occludin protein was increased in the transfectants compared to parental cells, and binding of occludin to Cx32 protein was demonstrated by immunoprecipitation. In freeze fracture of the transfectants, tight junction strands were more numerous and complex compared to parental cells, and small gap junction plaques appeared within induced tight junction strands. Nevertheless, no change in barrier function of tight junctions was observed. These results indicate that in hepatocytes, gap junction, and tight junction expression are closely coordinated, and that Cx32 may play a role in regulating occludin expression.  相似文献   

4.
The present paper deals with the comparative EM study of the detachment of mouse urinary bladder epithelial cells under various physiological conditions, namely, during gestation and in adult mice following induction by endotoxin or by exposure to moderate stress. It has been shown that desquamation during gestation involves two distinct modes, shedding of single cells and formation of apoptotic bodies. Moderate stress in adult female mice induced by constant illumination for 72 or 96 hours, results in desquamation of superficial and intermediate cells. Application of LPS is followed by desquamation of single cells and whole sheets of cells. Cell detachment involves interruption of tight junctions between neighbouring cells and formation of numerous cup shaped vesicles, multivesicular bodies and vacuoles at the base of desquamating cells. LPS induces desquamation entails delivery of lysosomal enzymes extracellulary into the intercellular space. In the areas of sloughing the bladder epithelium lack permeability barrier. Desquamated cells in the bladder lumen are mostly alive. These results clearly demonstrate the existence of specific adhesion mechanisms of detachment and desquamation of uroepithelial cells.  相似文献   

5.
Gap junctional intercellular communication (GJIC) is thought to play a crucial role in cell differentiation. Small gap junction plaques are frequently associated with tight junction strands in hepatocytes, suggesting that gap junctions may be closely related to the role of tight junctions in the establishment of cell polarity. To examine the exact role of gap junctions in regulating tight junctions, we transfected connexin 32 (Cx32), Cx26, or Cx43 cDNAs into immortalized mouse hepatocytes derived from Cx32-deficient mice and examined the expression and function of the endogenous tight junction molecules. In transient wild-type Cx32 transfectants, immunocytochemistry revealed that endogenous occludin was in part localized at cell borders, where it was colocalized with Cx32, whereas neither was detected in parental cells. In Cx32 null hepatocytes transfected with Cx32 truncated at position 220 (R220stop), wild-type Cx26, or wild-type Cx43 cDNAs, occludin was not detected at cell borders. In stable wild-type Cx32 transfectants, occludin, claudin-1, and ZO-1 mRNAs and proteins were significantly increased compared to parental cells and all of the proteins were colocalized with Cx32 at cell borders. Treatment with a GJIC blocker, 18 beta-glycyrrhetinic acid, resulted in decreases of occludin and claudin-1 at cell borders in the stable transfectants. The induction of tight junction proteins in the stable transfectants was accompanied by an increase in both fence and barrier functions of tight junctions. Furthermore, in the stable transfectants, circumferencial actin filaments were also increased without a change of actin protein. These results indicate that Cx32 formation and/or Cx32-mediated intercellular communication may participate in the formation of functional tight junctions and actin organization.  相似文献   

6.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

7.
It has been believed that epithelial cells maintain tight junctions at all times, including during cell division, to provide a continuous epithelial seal. However, changes in localization of integral tight junction proteins during cell division have not been examined. In this study, using SV40-immortalized mouse hepatocytes transfected with human Cx32 cDNA, in which tight junction strands and the endogenous tight junction proteins occludin, claudin-1, ZO-1, and ZO-2 were induced, we examined changes in localization of the tight junction proteins at all stages of cell division. All tight junction proteins were present between mitotic cells and neighboring cells throughout cell division. In late telophase, the integral tight junction proteins occludin and claudin-1, but not the cytoplasmic proteins ZO-1 and ZO-2, were concentrated in the midbody between the daughter cells and were observed at cell borders between the daugher and neighboring cells. These results indicate that the integral tight junction proteins are regulated in a different manner from the cytoplasmic proteins ZO-1 and ZO-2 during cytokinesis.  相似文献   

8.
9.
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier.  相似文献   

10.
We review here our work on the molecular and functional organization of endothelial cell-to-cell junctions. The first part of the review is dedicated to VE-cadherin, characterized by our group few years ago. This protein is a member of the large family of transmembrane adhesion proteins called cadherins. It is endothelial cell specific and plays a major role in the organization of adherens junctions. Inactivation of VE-cadherin gene or in vivo truncation of its cytoplasmic tail leads to a lethal phenotype due to the lack of correct organization of the vasculature in the embryo. We found that the defect was due to apoptosis of endothelial cells, which became unresponsive to the survival signal induced by vascular endothelial cell growth factor. Our data indicate that VE-cadherin may act as a scaffolding protein able to associate vascular endothelial cell growth factor receptor and to promote its signaling. In the second part of the review we consider another protein more recently discovered by us and called junctional adhesion molecule (JAM). This protein is a small immunoglobulin which is located at tight junctions in the endothelium and in epithelial cells. Evidence is discussed indicating that JAM takes part in the organization of tight junctions and modulates leukocyte extravasation through endothelial intercellular junctions in vitro and in vivo. The general role of tight junctions in endothelial cells is also discussed.  相似文献   

11.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

12.
The CTX family is a growing group of type I transmembrane proteins within the immunoglobulin superfamily (IgSF). They localize to junctional complexes between endothelial and epithelial cells and seem to participate in cell-cell adhesion and transmigration of leukocytes. Here, we report the identification of a new member of the CTX family. This protein, which was designated CLMP (coxsackie- and adenovirus receptor-like membrane protein), is composed of 373 amino acids including an extracellular part containing a V- and a C2-type domain, a transmembrane region and a cytoplasmic tail. CLMP mRNA was detected in a variety of both human and mouse tissues and cell lines. The protein migrated with an Mr of around 48 on SDS-PAGE and was predominantly expressed in epithelial cells within different tissues. In cultured epithelial cells, CLMP was detected in areas of cell-cell contacts. When exogenously expressed in polarized MDCK cells, CLMP was restricted to the subapical area of the lateral cell surface, where it co-localized with the tight junction markers ZO-1 and occludin. Also endogenous CLMP showed association with tight junctions, as analyzed in polarized human CACO-2 cells. This suggested a role for CLMP in cell-cell adhesion and indeed, overexpressed CLMP induced aggregation of non-polarized CHO cells. Furthermore, CLMP-expressing MDCK cells showed significantly increased transepithelial resistance, indicating a role for CLMP in junctional barrier function. Thus, we conclude that CLMP is a novel cell-cell adhesion molecule and a new component of epithelial tight junctions. We also suggest, based on phylogenetic studies, that CLMP, CAR, ESAM, and BT-IgSF form a new group of proteins within the CTX family.  相似文献   

13.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

14.
Endothelial cell-selective adhesion molecule (ESAM) is an immunoglobulin-like transmembrane protein associated with endothelial tight junctions (TJ). Based on a yeast two-hybrid screen, we have identified the membrane-associated guanylate kinase protein MAGI-1 as an intracellular binding partner of ESAM. MAGI-1 is a multidomain adaptor protein, which binds to transmembrane, cytoskeletal, and signaling molecules, and has been localized to tight junctions in epithelial cells. MAGI-1 associates with the very C-terminal sequence of ESAM most likely through a PDZ domain-mediated interaction. The direct interaction between ESAM and MAGI-1 was confirmed by pull-down experiments. The two proteins formed stable complexes in transfected Chinese hamster ovary (CHO) cells, which could be immunoisolated. We found MAGI-1 to be associated with cell-cell contacts in human umbilical vein endothelial cells (HUVECs) and in mouse endothelium, where it colocalizes with ESAM. In CHO cells, recruitment of MAGI-1 to cell contacts required the presence of ESAM. Hence, ESAM may be involved in anchoring MAGI-1 at endothelial tight junctions.  相似文献   

15.
Using primary explant cultures of mouse bladder, the early response of the urothelium after superficial and full-thickness injuries was investigated. In such an in vitro wound healing model, explant surfaces with a mostly desquamated urothelial superficial layer represented superficial wounds, and the exposed lamina propria at the cut edges of the explants represented full-thickness wounds. The urothelial cell ultrastructure, the expression and subcellular distribution of the tight junctional protein occludin, and differentiation-related proteins CK 20, uroplakins, and actin were followed. Since singular terminally differentiated superficial cells remained on the urothelium after superficial injury (i.e., original superficial cells), we sought to determine their role during the urothelial wound-healing process. Ultrastructural and immunocytochemical studies have revealed that restored tight junctions are the earliest cellular event during the urothelial superficial and full-thickness wound-healing process. Occludin-containing tight junctions are developed before the new superficial cells are terminally differentiated. New insights into the urothelium wound-healing process were provided by demonstrating that the original superficial cells contribute to the urothelium wound healing by developing tight junctions with de novo differentiated superficial cells and by stretching, thus providing a large urothelial surface with asymmetric unit membrane plaques.  相似文献   

16.
Motile ciliated cells were observed in sputum of a patient during two attacks of acute respiratory disease (ARD-1 and ARD-2). These cells appeared in the sputum on the fifth day of the disease in ARD-1 and on the third day in ARD-2. The period of massive desquamation of ciliated cells from the respiratory tract surface was 3 h in ARD-1 and no more than 1 h in ARD-2. Desquamation of ciliated cells was assumed to be due to the simultaneous influence of two factors: viruses and some unknown proinflammatory agents. Either factor alone, be it respiratory virus infection or inflammatory mediators (chemokines, neutrophils, or reactive oxygen species), is insufficient to cause desquamation. Desquamation of ciliated cells ceases simultaneously with the disappearance of viruses. Desquamated cells are supposed to contain virus particles and desquamation is considered to be one of the host defense mechanisms against viruses.Translated from Fiziologiya Cheloveka, Vol. 31, No. 1, 2005, pp. 137–140.Original Russian Text Copyright © 2005 by Fedotova, Fedotov.  相似文献   

17.
18.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

19.
Shigella spp. are a group of Gram-negative enteric bacilli that cause acute dysentery in humans. We demonstrate that Shigella flexneri has evolved the ability to regulate functional components of tight junctions after interaction at the apical and basolateral pole of model intestinal epithelia. In the regulation of tight junctional protein assemblies, S. flexneri can engage serotype-specific mechanisms, which targets not only expression, but also cellular distribution and membrane association of components of tight junctions. Distinct mechanisms resulting in the regulation of tight junction-associated proteins are initiated after either apical or basolateral interactions. S. flexneri serotype 2a has the ability to remove claudin-1 from Triton X-insoluble protein fractions upon apical exposure to T-84 cell monolayers. S. flexneri serotype 2a and 5, but not the non-invasive Escherichia coli strain F-18, share the ability to regulate expression of ZO-1, ZO-2, E-cadherin and to dephosphorylate occludin. The disruption of tight junctions is dependent on direct interaction of living Shigella with intestinal epithelial cells and is supported by heat-stable secreted bacterial products. Intestinal epithelial cells have the ability to compensate in part for S. flexneri induced regulation of tight junction-associated proteins.  相似文献   

20.
The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号