首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A spectrophotometric method was used to study the effect of pH and competing ions (Ca, Mg, Na) on the stability of Fe- and Cu-chelates of EDTA, DTPA and EDDHA. The measured stability was compared with the calculated stability-pH diagrams. A favourable agreement with the values of the formation constants was observed. Laboratory and pot experiments were carried out by adding these chelates to saline-alkaline soil and the extractable fractions of trace elements in soil and their uptake by barley were evaluated. Availability and uptake of Fe and Cu significantly increased, with different magnitude, by chelate application. The influence on Mn and Zn was variable. The most effective chelating agents, as deduced from uptake were: EDDHA for Fe, Cu and Mn; and EDTA for Zn.Radiobiological and Physical chemistry, Faculty of Agricultural Sciences, Ghent Belgium  相似文献   

2.

Aim

A mechanism of action for the performance of Fe chelates as soil-applied fertilizer has been hypothesized by Lindsay and Schwab (J Plant Nutr 5:821–840, 1982), in which the ligand participates in a cyclic process of delivering Fe at the root surface and mobilizing Fe from the soil. This “shuttle mechanism” seems appealing in view of fertilizer efficiency, but little is known about its performance. The chelate FeEDDHA is a commonly used Fe fertilizer on calcareous soils.

Methods

In this study, the performance of the shuttle mechanism has been examined for FeEDDHA chelates in soil interaction and pot trial experiments.

Results

The specificity of EDDHA ligands for chelating Fe from soils of low Fe availability is limited. Experimental support for a shuttle mechanism in soil-plant systems with FeEDDHA was found: specific metal mobilization only occurred upon FeEDDHA-facilitated Fe uptake. The mobilized metals originated at least in part from the root surface instead of the soil.

Conclusion

The results from this study support the existence of a shuttle mechanism with FeEDDHA in soil application. If the efficiency of the shuttle mechanism is however largely controlled by metal availability in the bulk soil, it is heavily compromised by complexation of competing cations: Al, Mn and particularly Cu.  相似文献   

3.
Summary An examination was made of the changes with time in the composition of aqueous extracts of a highly calcareous clay that had been treated with one of the four chelates Fe-DTPA, Fe-CDTA, Fe-HEEDDA and Fe-EDHPA (Fe-Chel 138).It was found that a rapid fall in the recovery of soluble iron took place with both Fe-DTPA and Fe-HEEDDA due to sorption by the clay and also to replacement of iron in the chelate by calcium from the soil. By using Fe59-labelled compounds, it was found that for both these chelates considerable isotopic exchange occurred between the Fe59 and the natural soil iron, and that this exchange increased with decreasing rate of application of chelated iron.Fe-CDTA and Fe EDHPA were found to be comparatively unaffected by contact with the soil; over 80% recovery was obtained after 15 days, with treatments ranging from 2.5 to 100 ppm chelated iron. Negligible isotopic exchange took place with these two chelates.These results are discussed in relation to previously published results of laboratory experiments with iron chelates and to the treatment of soils for the control of iron chlorosis.  相似文献   

4.
Summary Laboratory incubation studies on the reactions of Fe-DTPA, Fe-EDTA, Fe-citrate and Fe-fulvate with a calcareous soil indicated that Fe3+ was very rapidly displaced by Ca2+, Mg2+, Zn2+ and Cu2+ ions. The displacement of iron was in the reverse order of the stability of the Fe-chelates. The activity of Fe3+, Ca2+, Mg2+, Zn2+ and Cu2+ tended to attain a constant value with time. Application of chelating agents to a calcareous soil mobilized different amounts of iron as defined by their relative stability and cation competition. The degree of mobilization increased with increasing levels of applied chelating agents. A significant negative correlation (r = –0.77)* was observed between pH and DTPA-extractable iron. Results of greenhouse experiment showed significant increase in the dry matter yield and iron uptake by corn plants upon application of iron-chelates. The chelates enhance the uptake of both native and applied sources. The effectiveness of the chelates used was in the order of their capacity to maintain iron in soluble form in the soil solution. These results suggest that iron nutrition of plants in calcareous soils can be effectively regulated by the application of iron chelated by natural or synthetic water-soluble chelating agents.  相似文献   

5.
Iron chlorosis is commonly corrected by the application of EDDHA chelates, whose industrial synthesis produces o,oEDDHA together with a mixture of regioisomers and other unknown by-products. HJB, an o,oEDDHA analogous, is a new chelating agent with a purer synthesis pathway than EDDHA. The HJB/Fe3+ stability constant is intermediate between the racemic and meso o,oEDDHA/Fe3+ stereoisomers. This work studied the efficacy of HJB as a Fe source in plant nutrition. No significant differences between o,oEDDHA/Fe3+, HJB/Fe3+ and HBED/Fe3+ were observed when they are used as substrates of the iron-chelate reductase of mild chlorotic cucumber plants. Chelates prepared with the stable isotope 57Fe were used in both soil and hydroponic experiments. In the hydroponic experiment, nutrient solutions with low doses of chelates were renewed weekly. Soybean plants treated with o,oEDDHA/57Fe3+ recorded the highest results in biomass, SPAD index and Fe nutrition. In the soil experiment, chelates were added once at a rate of 2.5 mg Fe per kg of a calcareous soil. Soybean plants treated with HJB/57Fe3+ recorded a higher biomass and SPAD index in young leaves than the plants treated with o,oEDDHA/57Fe3+; however, 57Fe and total Fe concentrations in leaves were lower. The results of both pot experiments are associated with a faster ability by o,oEDDHA to provide Fe to the plants and with a more continuous supply of Fe from HJB/Fe3+. HJB/57Fe3+ effectively alleviated the Fe-deficiency chlorosis of soybean with a longer lasting effect than o,oEDDHA/57Fe3+.  相似文献   

6.
The effectiveness of foliar fertilization to re-green chlorotic leaves in iron-deficient pear trees has been studied. Trials were made to assess the influence of (i) the level of Fe deficiency, (ii) the leaf surface treated (adaxial or abaxial), and (iii) two different surfactants, L-77 and Mistol. Treatments were ferrous sulphate alone, ascorbic, citric and sulphuric acids, applied either alone or in combination with ferrous sulphate, Fe-DTPA and water as a control. Solutions were applied with a brush and leaves were treated twice each year. None of the treatments caused a full recovery from Fe deficiency chlorosis. Treatments containing Fe caused the largest re-greening effects, and FeSO4 had a similar re-greening effect to Fe(III)-DTPA. Increases in leaf Chl were more pronounced with abaxial leaf surface applications and in severely deficient leaves. Using Fe(III)-DTPA in foliar sprays does not seem to be justified, since their effects are not better than those of FeSO4. The joint use of Fe(III)-DTPA and L-77 and that of FeSO4 and citric acid do not seem to be suitable. With a single foliar application, FeSO4 combined with acids gave slightly better results than FeSO4 alone. Acidic solution applications without Fe may be effective in alleviating chlorosis in some cases, especially in the case of citric acid. In the current state of knowledge, foliar fertilization cannot offer yet a good alternative for full control of Fe chlorosis, although its low environmental impact and cost make this technique a good complementary measure to soil Fe-chelate applications and other chlorosis alleviation management techniques. Abbreviations: Chl – chlorophyll; EDDCHA – ethylenediamine di(5-carboxy-2-hydroxyphenylacetic) acid; EDDHA – ethylenediamine di(o-hydroxyphenylacetic) acid; EDDHMA – ethylenediamine di(o-hydroxy-p-methylphenylacetic) acid; EDDHSA – ethylenediamine di(2-hydroxy-5-sulfophenylacetic) acid  相似文献   

7.
Evaluation of 59Fe-lignosulfonates complexes as Fe-sources for plants   总被引:1,自引:0,他引:1  
Iron chlorosis is a wide-spread limiting factor of production in agriculture. To cope with this problem, synthetic chelates (like EDTA or EDDHA) of Fe are used in foliar-spray or in soil treatments; however, these products are very expensive. Therefore paper-production byproducts, like Lignosulfonates (LS), with varying content of carboxylate and sulfonate groups, were tested with respect to their ability to maintain Fe in the solution of soils and to feed plants grown in hydroponics with Fe through foliar sprays or application to the nutrient solution. Results show that LS had a low capability to solubilize 59Fe-hydroxide and that preformed 59Fe(III)-LS complexes had poor mobility through a soil column (pH 7.5) and scarce stability when interacting with soils compared to 59Fe(III)-EDDHA. However when 59Fe(III)-LS were supplied to roots in a hydroponic system, they demonstrated an even higher capability to fed Fe-deficient tomato plants than 59Fe(III)-EDDHA. Hence, data here presented indicate that the low Fe use efficiency from Fe-LS observed in soil-applications is due to interactions of these Fe-sources with soil colloids rather than to the low capability of roots to use them. Foliar application experiments of 59Fe(III)-LS or 59Fe(III)-EDTA to Fe-deficient cucumber plants show that uptake and reduction rates of Fe were similar between all these complexes; on the other hand, when 59Fe(III)-LS were sprayed on Fe-deficient tomato leaves, they showed a lower uptake rate, but a similar reduction rate, than 59Fe(III)-EDTA did. In conclusion, Fe-LS may be a valid, eco-compatible and cheap alternative to synthetic chelates in dealing with Fe chlorosis when applied foliarly or in the nutrient solution of hydroponically grown plants.  相似文献   

8.
Summary Fe-EDTA and Fe-HEEDTA, labelled with Fe59, were applied at rates of 10 and 100 ppm iron to 50-g samples of dry soil, which were then stored for periods ranging from one to fifteen days before extracting with water.The analyses of the extracts lead to the following general conclusions.1. The decrease in soluble iron could be attributed to both sorption of chelate anions by the clay and to replacement of iron by calcium in the chelate molecule.2. The amount of each chelate sorbed changed little with time and was proportional to the quantity applied. More HEEDTA was sorbed than EDTA.3. The initial decrease in the concentration of soluble iron was rapid for both chelates, but was the greater for Fe-HEEDTA.4. The precipitation of iron from the soluble Fe-HEEDTA was slower than from Fe-EDTA, so that fifteen days after treatment more soluble iron was obtained from the Fe-HEEDTA treatments.5. Marked increases in the recoveries of Fe-EDTA were made when the treated soils were sealed within small containers, compared with those allowed free access to the air. Comparable treatments using Fe-HEEDTA had a much smaller effect.6. Isotopic exchange of Fe59 with natural soil iron was greater in the treatments with 10 ppm chelated iron than the 100 ppm level. Fe-HEEDTA was subject to more exchange than Fe-EDTA at both levels.These results are discussed in relation to the treatment of soils with iron chelates for the control of lime-induced chlorosis, and to the importance of isotopic exchange when using chelates labelled with radioactive iron in soil.  相似文献   

9.
Summary Easily soluble heavy-metal fractions from different soils, a garbage-sewage sludge compost and peat were extracted by EUF. Blanks were determined by extracting distilled water. As the rubber seal of the extraction chamber contained Zn, the obtained Zn values were not reliable. The relative standard deviations of extracted micronutrients were 29.1% for Fe and 20.5% for Mn, Fe, Mn, Zn, Cu, Pb, Cd and Cr were not only found in the filters but also in the extracts.The extraction of CrIII and CrVI solutions showed that CrVI mainly migrated into the anode extract. CrIII was found mainly in the cathode filter and cathode extract, a smaller part however was obviously oxidized to CrVI and migrated into the anode extract. Consequently, CrIII and CrVI in soils could not be distinguished unequivocally by EUF.The amounts of Zn, Cu, Pb and Cd extracted by EUF from various substrates were small compared with the quantities extracted by 2N HCl. The heavy metal contents of the leaves were mostly in the order of those of the EUF extract.Several vineyard soils as well as peat were mixed with increasing quantities of Grünsalz (green salt), a fertilizer consisting mainly of iron sulphate. High amounts of Grünsalz (100–200 g/200 g soil) were necessary to raise soluble Fe in calcareous soils. In peat, however, small Grünsalz additions (1 g/50 g peat) were sufficient. Soluble Mn and Cu increased too when Grünsalz was added to soil or peat. These results give valuable information on how grapevine chlorosis can be reduced by the use of Grünsalz or mixtures of peat and Grünsalz.  相似文献   

10.
Solubility and dissolution of iron oxides   总被引:6,自引:0,他引:6  
In most soils, FeIII oxides (group name) are the common source of Fe for plant nutrition. Since this Fe has to be supplied via solution, the solubility and the dissolution rate of the Fe oxides are essential for the Fe supply. Hydrolysis constants and solubility products (Ksp) describing the effect of pH on FeIII ion concentration in solution are available for the well-known Fe oxides occurring in soils such as goethite, hematite, ferrihydrite. Ksp values are usually extremely low ((Fe3+)·(OH)3=10–37–10–44). However, for each mineral type, Ksp may increase by several orders of magnitude with decreasing crystal size and it decreases with increasing Al substitution assuming ideal solid solution between the pure end-members. Based on such calculations a poorly crystalline goethite with a crystal size of 5 nm may well reach the solubility of ferrihydrite. The variations in Ksp are of relevance for soils because crystal size and Al substitution of soil Fe oxides vary considerably and can now be determined relatively easily.The concentration of Fe2+ in soil solutions is often much higher than that of Fe(III) ions. Therefore, redox potential strongly influences the activity of FeII. At a given pH and Eh, the activity of FeII is higher the higher Ksp of the FeIII oxide and thus also varies with the type of Fe oxide present.Besides the solubility, it is the dissolution rate which governs the supply of soluble Fe to the plant roots. Dissolution of Fe oxides takes place either by protonation, complexation or, most important, by reduction. Numerous dissolution rate studies with various FeIII oxides were conducted in strong mineral acids (protonation) and they have shown that besides the Fe oxide species, crystal size and/or crystal order and substitution are important determinative factors. For example, in soils, small amounts of a more highly soluble meta- or instable Fe oxide such as ferrihydrite with a large specific surface (several hundred m2g–1) may be essential for the Fe supply to the plant root. Its higher dissolution rate can also be used to quantify its amount in soils. Ferrihydrite can be an important component in soils with high amounts of organic matter and/or active redox dynamics, whereas highly aerated and strongly weathered soils are usually very low in ferrihydrite. On the other hand, dissolution rates of goethites decrease as their Al substitution increases.Much less information exists on the rate of reductive and chelative dissolution of Fe oxides which generally simulate soil conditions better than dissolution by protonation. Here again, type of oxide, crystal size and substitution are important factors. Organic anions such as oxalate, which are adsorbed at the surface, may weaken the Fe3+-O bonds and thereby increase reductive dissolution. As often observed in weathering, the dissolution features of the crystals appear to follow zones of weakness in the crystal.  相似文献   

11.
The Fe chelate o,p-EDDHA/Fe3+, in addition to o,o-EDDHA/Fe3+, was found recently to be a component of commercial EDDHA/Fe3+ chelates. The European Regulation on fertilisers has included o,p-EDDHA as an authorized chelating agent. The efficacy of o,o-EDDHA/Fe3+, o,p-EDDHA/Fe3+ and EDTA/Fe3+ chelates as Fe sources in plant nutrition was studied. Iron-chelate reductase (FC-R) in young cucumber plants (Cucumis sativus L.) roots reduced o,p-EDDHA/Fe3+ faster than o,o-EDDHA/Fe3+, EDTA/Fe3+ and a commercial source of EDDHA/Fe3+. The o,p-EDDHA/Fe3+ chelate was also more effective than the o,o-EDDHA/Fe3+ in decreasing the severity of Fe-deficiency chlorosis in leaves of young soybean (Glycine max L.) plants grown hydroponically. The o,p-EDDHA ligand was more effective in the short-term than the EDTA and o,o-EDDHA ligands at dissolving Fe from selected Fe minerals and soils. However, the ultimate quantity of dissolve Fe was greatest with the o,o-EDDHA ligand.  相似文献   

12.
The behaviour of EDDHA isomers in soils as influenced by soil properties   总被引:1,自引:0,他引:1  
FeEDDHA products are applied to correct iron chlorosis in plants and consist of a mixture of EDDHA isomers chelated to iron. In this study such mixtures have been divided into four (groups of) isomers: racemic o,o-EDDHA, meso o,o-EDDHA, o,p-EDDHA and rest-EDDHA. The physical and chemical properties of these isomers differ and hence does their ability to deliver Fe to plants. To come to a soil-specific iron fertilization recommendation, the behaviour of the EDDHA isomers in the soil needs to be understood. This behaviour has been examined in a soil interaction experiment as a function of time, and it has been related to soil properties. The isomer fractions remaining in solution can be ranked racemic o,o-FeEDDHA > meso o,o-FeEDDHA > rest-FeEDDHA > o,p-FeEDDHA, regardless of soil properties. The o,o-EDDHA isomers largely determine the Fe concentration in solution. Although rest-EDDHA also consists of compounds that chelate Fe more strongly than meso o,o-EDDHA, the latter is on average better capable of keeping Fe in solution upon interaction with soil. The principal adsorption surface differs per EDDHA isomer. For racemic o,o-FeEDDHA it is organic matter, for meso o,o-FeEDDHA it is iron (hydr)oxide and for o,p-FeEDDHA clay minerals. Cu and Al are important competing cations. Cu forms soluble complexes with o,p-EDDHA, and Al with meso o,o-EDDHA not chelated to Fe. Al is likely to affect the effectiveness of a potential shuttle effect. The tendency of o,p-FeEDDHA and rest-FeEDDHA to be removed from solution, makes these isomers less effective as iron fertilizer in soil application, in particular on clay soils.  相似文献   

13.
Elgala  A. M.  Maier  R. H. 《Plant and Soil》1971,34(1):607-617
Summary The chemical behaviour of the sodium form of ethylenediamine di(o-hydroxyphenylacetic acid), Na2EDDHA, in a calcareous soil column was studied. The results show loss about 2/3 of the synthetic chelate in the soil, possibly due to microbial decomposition and/or fixation of EDDHA. The application of Na2EDDHA caused an increase in the amount of water-soluble forms of certain elements in the following decreasing order: Fe, Cu, Mn, Ni, Zn and Ca. The increase in the water-soluble forms of such elements is due possibly to the chelation of their insoluble compounds in the soil. The solubilization effect of Na2EDDHA and the subsequent movement of the elements in the soil solution resulted in a significant decrease in their amounts in the exchangeable and acid-soluble forms in the soil. In conclusion, the synthetic chelate of EDDHA underwent chemical reactions in the soil and caused changes in the ratio of certain elements in the various chemical forms. Sen. author, formerly graduate student at the University of Arizona, now Assistant Professor, University of Ain-Shams, Cairo, Egypt. Jr. author, Vice Chancellor, University of Wisc.-Green Bay.  相似文献   

14.
W. L. Lindsay 《Plant and Soil》1991,130(1-2):27-34
The solubility of Fe in soils is largely controlled by Fe oxides; ferrihydrite, amorphous ferric hydroxide, and soil-Fe are generally believed to exert the major control. Fe(III) hydrolysis species constitute the major Fe species in solution. Other inorganic Fe complexes are present, but their concentrations are much less than the hydrolysis species. Organic complexes of Fe including those of organic acids like citrate, oxalate, and malate contribute slightly to increased Fe solubility in acid soils, but not in alkaline soils.The most important influence that organic matter has on the solubilization of Fe is through reduction. Respiration of organic matter creates reduction microsites in soil where Fe2+ concentrations increase above those of the Fe(III) hydrolysis species. Fluctuating redox conditions in these microsites are conducive to the formation of a mixed valency ferrosic hydroxide. This metastable precipitate maintains an elevated level of soluble inorganic Fe for prolonged periods and increases Fe availability to plants. The release of reducing agents and acids next to roots, as well as the production of siderophores by microorganisms within the rhizosphere, contribute to the solubilization and increased availability of Fe to plants.  相似文献   

15.
The purpose of this study was to leach Cu, Zn, As, and Fe from contaminated soil and sediment samples with indigenous heterotrophic bacteria isolated from the study sites. The sediment contained Fe in the form of goethite and low concentrations of other metals. The soil contained hematite and high concentrations of other metals. The environmental conditions affected the bacterial activity in the metals dissolution. As and Fe were the major metals leached from the sediment sample while a minor fraction of Cu was solubilized. Cu and Zn were the major metals leached from the soil sample while only a minor fraction of Fe was dissolved. As a control, a disinfectant was used for partial inactivation of indigenous bacteria. This treatment had a negative effect on the leaching of Fe, Zn and As from soil and sediment samples, but it increased Cu dissolution from the sediment. Bacterial different dissolution of Fe during soil and sediment bioleaching was also investigated with ferrihydrite. The iron concentration was much higher during ferrihydrite dissolution when indigenous bacteria from sediment were used compared to indigenous bacteria isolated from soil. The indigenous bacterial inoculum provided more biological and metabolic diversity which may account for the difference in reductive iron reduction from ferrihydrite. The Bacillus cultures isolated from soil and sediment samples showed similar efficiencies in reductive dissolution of ferrihydrite. The synergetic bacterial inhibition effect created by the environmental conditions can influence bioremediation effect.  相似文献   

16.
The application of FeEDDHA products is the most common practice to prevent or to remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of EDDHA components chelated to Fe. In this study such mixtures have been divided into four (groups of) components: racemic o,o-EDDHA, meso o,o-EDDHA, o,p-EDDHA and rest-EDDHA. Because the physical and chemical properties of these components differ, so does their effectiveness in delivering Fe to the plant. This effectiveness has not yet been examined in soil application, but needs to be understood to come to an adequate Fe fertilization recommendation. In this study the influence of composition of FeEDDHA treatments on Fe uptake by soybean plants (Glycine Max (L.) Merr. cv. Mycogen 5072) grown on calcareous soils was examined in two pot trials involving eight soils. The FeEDDHA treatments were equal in Fe dose but differed in o,o-FeEDDHA content, and were applied prior to the set in of chlorosis. The o,o-FeEDDHA content largely determined the Fe concentration in the pore water. In turn, in soils that induced chlorosis, the Fe concentration in the pore water determined the Fe uptake. The relationship between Fe concentration and Fe uptake is non-linear: initially Fe uptake increases strongly with increasing Fe concentration, but the slope flattens and a plateau is reached. FeEDDHA treatments increased both yield (up to 30%) and Fe content of the plant tissue (up to 50%). From FeEDDHA products with a higher o,o-FeEDDHA content, a smaller Fe dose is required to obtain the same results in terms of yield and Fe nutritional value.  相似文献   

17.
A. Wallace 《Plant and Soil》1991,130(1-2):281-288
Satisfactory progress has been made in recent years in preventing and correcting Fe deficiency in plants, and more can be expected in the future. Important advances include uses of acid- and Fe-fortified organic wastes and use of amended sulfur-pyrite mixes in soil. Three different approaches with organics are as an acidified matrix with Fe, as a means of chelating Fe, and as a carrier of acidifiers. Several procedures can help minimize Fe deficiency. (1) Avoid mis-management of soil physical properties and overirrigation. (2) Avoid nutrient imbalance, such as excess P or excess micronutrients. (3) Use preplant application of mildly acid-organic matter-Fe-sulfur or pyrite mixes worked into zones of soil or banded into seed rows. It is important that small bands or spots in soil be completely neutralized of CaCO3. (4) Where foliar sprays can or need be used, especially to correct mild chlorosis, use ferrous compounds prepared to be delivered at pH 3± so that the Fe does not easily oxidize or precipitate in the solution. (5) For established trees that have become Fe deficient, inject, via slant drilling of small holes in tree trunks, dilute ferric ammonium citrate sufficient to supply not more than 100 mg kg-1 Fe to leaves (dry weight basis). Most but not all species will respond. Procedure may be repeated in two or three weeks if necessary. (6) Iron chelates may be used in drip irrigation. If soil is sandy, soil pH not over 7.2, FeDTPA may be used; otherwise, FeEDDHA should be used. If the Fe is supplied with no other nutrients, pH may be at 4 and some FeSO4 included to recycle the chelating agents. If Fe is used without chelating agents, the pH may be 1.0 or less and other nutrients included. (7) Urea-acid sulfate-Fe sulfate may be irrigated into soil around plants, especially if soil was polymer treated. (8) Efficiency of use of Fe chelates may be increased by making them slow release or by applying with seeds.  相似文献   

18.
Obligatory reduction of ferric chelates in iron uptake by soybeans   总被引:39,自引:12,他引:27       下载免费PDF全文
The contrasting Fe2+ and Fe3+ chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe3+-chelates. EDDHA binds Fe3+ strongly, but Fe2+ weakly; BPDS binds Fe2+ strongly but Fe3+ weakly. Addition of an excess of BPDS to nutrient solutions containing Fe3+-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)3]4− accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe3+-chelates appear to require reduction of Fe3+-chelate to Fe2+-chelate at the root, with Fe2+ being the principal form of Fe absorbed by soybean.  相似文献   

19.
Nuclei from frozen calf thymus suspended in buffer were analyzed for metal content prior to and after repeated washing. After three such extractions about 0.1 micrograms Zn/mg DNA and 0.025 micrograms Cu/mg DNA remained tightly associated with chromatin. This level of metal was essentially unchanged with subsequent washings. Digestion of extracted nuclei with micrococcal nuclease yielded soluble nucleoprotein containing zinc and copper. Metal enriched regions of chromatin appeared to be preferentially solubilized by digestion, and the solubilized metal was only partially dializable either with or without EDTA. Metal profiles generated from gel (A-5m) chromatography analysis of chelated and non-chelated solubilized chromatin were distinctive in that copper was undetectable (by flame AA) while zinc was associated only with low molecular weight products when EDTA was used. In contrast, both metals were detected with higher molecular weight oligonucleosomes in the absence of chelating agents. Additionally, the two metals localized within nucleoprotein peaks and these metal-containing regions were only resolved by gel chromatography when EDTA was omitted throughout the procedure. A discrete Cu-rich species in a region of the profile suggests a subset of Cu-rich nucleoprotein complexes.  相似文献   

20.
A greenhouse pot experiment withLolium multiflorum, cv. Tetila, grown in a calcareous soil was carried out to determine the efficiency of iron-chelate (Fe-EDTA,-DTPA,-EDDHA and Rexene) as soil amendments. In the soil solution Fe was displaced more readily from EDTA chelate and less so from EDDHA chelate. A significant increase of Mn, Cu and Zn in the soil solution was observed, with Fe-DTPA; Cu and Zn with Fe-EDTA; Cu with Rexene and, with Fe-EDDHA after 14 days. Plant took up more Fe from Rexene treatment than from the other treatments, Fe-EDDHA was the least efficient. In general, Mn, Cu and Zn concentrations in the leaf diminish in all the treatments compared with the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号