首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular cambium ofBotrychium ternatum rhizome varied according to age, position and season was studied by light and electron microscopy. Cambium at the 6th internode (6-year-old cambium) had the greatest number of active cambial cells in August and September, thus it was in the most active stage. The active cells were characterized by the presence of a large vacuole, few storage materials such as starch grains within plastids or lipid droplets, a thin tangential wall; and various cell organelles in the thin peripheral layer of cytoplasm. When the 6-year-old cambium reached its dormant season after November, the dormant cells were filled with numerous storage materials and had few cell organelles. Our observations suggested that the initiation and cessation of cambial activity may be correlated with the annual life cycle of this plant: the vegetative and reproductive leaves began to emerge in June and July, respectively, and the sporophyll withered in November after the spore dispersal. Most cambial cells at the 10th internode, which remained in a dormant state throughout the year, were filled with numerous storage materials. Our results indicated that the activity of vascular cambium in the 10th internode was determinate.  相似文献   

2.
Cambial activity in white spruce stems in Alaska was observed during a 2-year period in 50–60-year-old natural stands. Mitotic index was used as a measure of the rate of periclinal division of fusiform cells in the cambial zone. Anticlinal divisions were relatively rare, averaging only one per 27S periclinal divisions in most stems. Mitotic index, at any given time, appeared uniform throughout the cambial zone of an internode, among internodes of the same tree, and even among trees growing at markedly different rates. Diurnal variation in mitotic index was observed. There were three distinct growing season periods: early, grand, and late. Early period activity was characterized by reactivation of periclinal division, erratic mitotic indices, and an approximate doubling of the number of cambial zone cells per radial file (NCZ). Production of the first new xylem and phloem elements marked the beginning of the grand period. Rate of cell production in the cambial zone remained about equal to derivative production for the next 45–50 days, when about 80 % of annual xylem and phloem increment occurred. There was a drop in NCZ at the beginning of the late period coincident with a decline in mitotic index, and NCZ soon dropped to the dormant level. Complete termination of cambial activity was gradual, extending through late August and perhaps into September.  相似文献   

3.
AMOBI  C. C. 《Annals of botany》1973,37(1):211-218
Freshly prepared chlor-zinc-iodide was used to determine theperiodicity of wood formation at breast height (144 cm fromthe ground) in the trunks of some trees growing in the LowlandRainforest around Ibadan, Nigeria. Wood formation shows seasonal periodicity in the plants studied.The cambial derivates on the xylem side differentiate into woodcells, which at a certain stage of differentiation have abundantcellulose in their secondary walls. The cellulose stains deepblue in chlor-zinc-iodide. This has been used as a criterionfor deciding that wood formation has started. When no cellswith deep blue staining secondary walls are found the cambiumis known to be dormant or quiscent. The resumption of cambial activity is correlated positivelywith bud break and unfolding of new leaves. In Bombax buonopozenseP. Beauv. the relationship may be obscured by local cambialactivity induced by injury. Wood formation stops in the trunks either towards the end ofthe rainy season or at the early part of the dry season. Itstarts either during the dry season or at the beginning of therainy season; but the bulk of the wood is formed during therainy season. Cambial activity stops in most cases before leaffall. At the cessation of wood formation the fully lignifiedxylem elements abut on the xylem mother cells or on xylem cellswith incompletely thickened cell walls. Presence or absence of a starch-free-zone and the noding ofthe vascular rays also give indications of seasonal periodicityin wood formation. Growth rings are periodic and one growthring is generally formed each year.  相似文献   

4.
The dormant cambial zone consisted of 5–6 cell layers in the main stem of Pinus sylvestris L. trees that were ca. I00 years old. Time of cambial reactivation was comparable at one (bottom) and 8 (top) meters above the ground. In spring, when the cambium reactivated, the number of cambial cells slightly increased and phloem cells were formed. The production of xylem cells followed 3–4 weeks later. The formation of xylem cells decreased, whereas that of phloem cells increased between late June and early July. Cambial reaction in 1-year-old cuttings that were debudded and treated apically with IAA in lanolin was similar to that in the ca. 100-year-old main stem. However, in debudded cuttings treated with plain lanolin, the number of cells in the carnbial zone decreased during the first week of culture, and only a few phloem cells were formed. Later, the fusiform cambial cells of the cambial zone were divided transversely and lost their typical morphology. It is proposed that some factor(s) from roots may stimulate the initiation of cambial cell division, because when the cambium reactivated, the number of cambial cells slightly increased in the ca. 100-year-old main stem, but decreased in the 1-year-old cuttings.  相似文献   

5.
Samples of a mature specimen of Kalopanax pictus, a ring-poroushardwood, were studied to compare the respective lengths offusiform cambial cells and vessel elements in the stem. Thelengths of dormant and reactivated fusiform cambial cells weremeasured with a confocal laser scanning microscope in tissuethat had been macerated by digestion with pectinase and in thicktangential sections. The lengths of early wood and late woodvessel elements were measured in tissues that had been maceratedby Franklin's method. The vessel elements and fusiform cambialcells varied considerably in length within individual samples.The mean length of early wood vessel elements corresponded tothat of fusiform cells in the dormant cambium but not in thereactivated cambium. Significant differences were observed betweenthe mean lengths of dormant and reactivated fusiform cambialcells, between those of reactivated fusiform cambial cells andearly wood vessel elements, between those of reactivated fusiformcambial cells and late wood vessel elements, and between thoseof early wood and late wood vessel elements. The frequency distributionsof lengths of cambial cells were bimodal and differed from thoseof vessel elements, which more closely resembled a normal distribution.The proportion of shorter lengths was higher in the reactivatedcambium than in the dormant cambium, the early wood and thelate wood vessel elements. Our results do not suppot the hypothesisthat the lengths of early wood vessel elements in ring-poroushardwoods change during differentiation. The similar rangesof recorded lengths suggest that short and long vessel elementsmight be derived directly from short and long cambial cells,respectively. Copyright 1999 Annals of Botany Company Kalopanax pictus, cambium, vessel element, confocal laser scanning microscopy, maceration, cell length.  相似文献   

6.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

7.
Cambial activity in Zygophyllum dumosum Boiss.—a dominantdesert shrub in Israel—was investigated. Cambial activityin young plants seems to be greatly affected by water supply,while cambial activity in old specimens was found to be moreendogenously controlled. A late-summer cambial dormancy wasobserved under field conditions even in plants that were irrigated.  相似文献   

8.
Cambium periodicity is correlated with changes in the cambial cell wall, but the heterogeneity of cell wall structure and composition makes it difficult to give an accurate interpretation, especially for complex secondary vascular tissues. A combination of different methods is necessary to reveal the structure of this complex cell wall. In this study, the cell wall architecture and composition of active and dormant cambial cells in Populus tomentosa were investigated by a combination of light microscopy, rapid-freezing and deep-etching electron microscopy, Fourier-transform infrared microspectroscopy and immuno-histochemistry. The results showed that the architecture of dormant cambial cell walls displayed a multi-layered structure, denser fibril network, smaller pore size, and fewer crosslinks between microfibrils than active cambial cell walls. The FTIR spectra of cell walls from active and dormant cambium showed differences in the intensity of bands near 1,740, 1,629, 1,537, 1,240, and 830 cm−1, which reflected differences in cell wall composition. Immuno-labeling indicated that high methyl-esterified homogalacturonan and (1 → 4)-β-d-galactan epitopes were abundant and distributed in active cambial cell walls, and relatively de-esterified homogalacturonan and (1 → 5)-α-l-arabinan epitopes had weak labeling in the active cambium, while almost no labeling or very weak labeling for high methyl-esterified homogalacturonan, (1 → 4)-β-d-galactan and (1 → 5)-α-l-arabinan epitopes occurred in dormant cambial cells, except for the de-esterified homogalacturonan epitope, which was abundant in dormant cambial cells. These results demonstrate that there are great differences, both in structure and composition, between active and dormant cambial cell walls, which reflect their dynamic changes during cambium activity.  相似文献   

9.

Key message

Cambial marking experiment and cambial activity analysis offer strong evidence on existence of annual growth rings in Heritiera fomes and revealing the potential of dendrochronological applications in Bangladesh mangroves.

Abstract

Despite enormous significance in coastal protection, biodiversity conservation and livelihood support to the local communities, mangrove ecosystems have been continuously degrading mainly due to anthropogenic disturbances and climate change. Time series based on dated tree ring is an option to identify the causes of forest dilapidation. In this study, we investigated the structure and periodicity of the growth ring in Heritiera fomes, the flagship tree species of the Bangladesh Sundarbans, combining cambial marking experiment and cambial activity analysis. Distinct growth rings were found which are delineated by a band of marginal parenchyma, predominantly one cell wide but up to three and occasionally interrupted with fiber. Of the 13 trees with cambium marking experiment, one growth ring was found in each tree during a year. The dormant cambium was characterized by the abrupt boundary between xylem and cambial zone, absence of enlarging or differentiating cambial derivatives, lower number of cambial cells and thicker radial walls in cambial cells. Growth ring anomalies, i.e., wedging and partially missing rings were also found. In most of the cases, the lower part of the eccentric discs had low radial increment (<0.75 mm) and therefore the growth ring in that area merged with previous one and produced wedging or partially missing ring. However, the existence of annual rings suggests its great potential for future dendrochronological applications to reveal the dynamics of vegetation and climate in Sundarbans.
  相似文献   

10.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

11.
Aspects of the structure and ultrastructure of the fusiform cambial cells of the taproot of Aesculus hippocastanum L. (horse chestnut) are described in relation to the seasonal cycle of cambial activity and dormancy. Particular attention is directed at cell walls and the microtubule and microfilament components of the cytoskeleton, using a range of cytochemical and immunolocalization techniques at the optical and electron-microscopical levels. During the dormant phase, cambial cell walls are thick and multi-layered, the cells possess a helical array of cortical microtubules, and microfilament bundles are oriented axially. In the early stages of reactivation, vesicle-like profiles are associated with the cell walls, whereas arrangement of the cytoskeletal elements remains unchanged. In the succeeding active phase, the cell walls are thin, and cortical microtubules form a random array, although microfilament bundles maintain a near-axial orientation. The observations are discussed in relation to the seasonal cycle of wall structure and cortical microtubule rearrangement within the vascular cambium of hardwood trees. It is suggested that the cell-wall thickening at the onset of cambial dormancy, which is associated with the presence of a helical cortical microtubule array, should be considered to be secondary wall thickening, and that selective lysis of this secondary wall layer during cambial reactivation restores the thinner, primary wall found around active cambial cells.  相似文献   

12.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

13.

Key message

We observed the formation of latewood tracheids with narrow diameters and thick walls and the disappearance of stored starch around the cambium on the locally heated region of stems in evergreen conifer Chamaecyparis pisifera during winter cambial dormancy.

Abstract

Wood formation is controlled by cambial cell division, which determines the quantity and quality of wood. We investigated the factors that control cambial activity and the formation of new tracheids in locally heated stems of the evergreen conifer Chamaecyparis pisifera. Electric heating tape was wrapped around one side of the stem, at breast height, of two trees in 2013 and two in 2014. Pairs of stems were locally heated in winter, and small blocks were collected from heated and non-heated regions of stems. Cambial activity and levels of stored starch around the cambium were investigated by microscopy. Cambial reactivation and xylem differentiation occurred earlier in heated than in non-heated regions. New cell plates were formed after 14–18 days of heating. After a few layers of tracheids with large diameters and thin walls had formed, cell division and cell enlargement during differentiation were inhibited. Tracheids with narrow diameters and thick walls, defining those as latewood, were formed near the cambium, and finally, four to six layers of tracheids were induced. After cambial reactivation, amounts of stored starch started to decrease and starch disappeared completely from phloem and xylem cells that were located near the cambium during the differentiation of heated regions. Our results suggest that an increase in temperature induces the conversion of stored starch to soluble sugars for continuous cambial cell division and earlywood formation. By contrast, a shortage of stored starch might be responsible for inhibition of cambial activity and induction of the formation of latewood tracheids.
  相似文献   

14.
Cambial Activity in Acacia raddiana Savi   总被引:1,自引:0,他引:1  
Cambial activity and extension growth of Acacia raddiana Saviwere investigated. Both types of growth are strongly dependenton relatively high temperatures. In contrast with the behaviourof the cambium of trees with a clear interrupted growth period,the cambium of A. raddiana saplings did not respond to the twodifferent photoperiods tried. A correlation between extension growth and cambial activitycould not always be observed. The cambium was always activeonly in young green twigs, and in their close proximity, underconditions where intensive extension growth took place. In oldertwigs the cambial activity was found to occur independentlyof the extension growth, even in the very same branches in whichextension growth occurs.  相似文献   

15.
SKENE  D. S. 《Annals of botany》1969,33(2):253-262
Cambial activity and tracheid development were studied in astand of Pinus radiata D. Don growing in Victoria, Australia.Samples were taken at weekly intervals from 16 August 1966 to19 September 1967. Cell counts were made from these samplesand the results used to estimate the time periods required tocomplete various phases of tracheid development. The average time required for cells of the cambial zone to completea division cycle was about 4 weeks, with little evidence ofany variation during the growing season. The time required forradial growth was about 3 weeks early in the season, graduallyreducing to about 1.5 weeks before the period of dormancy setin. The time required for the deposition of the secondary cellwall was 3 to 4 weeks early in the season, increasing to 8 to10 weeks, later. This increased period was accompanied by areduced rate of deposition of cell-wall material.  相似文献   

16.
Abstract

The foliar and cambial responses of Prosopis cineraria to five different coal-smoke regimes in Delhi, India, were studied using the monthly collections of leaves and cambial blocks as well as the data on SO2, NO2 and particulate concentrations from each of the five study sites. Coal-smoke inhibited pigment concentration, NR activity and sugar content and promoted stomatal index and the nitrate and sulfur contents. Stomatal conductance was low, leading to a drop in the net photosynthetic rate. Cambial activity started quite late and the annual increment of wood was reduced despite a prolonged active phase, possibly due to a distinctly retarded rate of cambial cell division. Vessel proportion in the wood increased but the size of vessel elements and fibers decreased. Such studies may help in identifying trees suitable for cultivation in the pollution-affected areas.  相似文献   

17.
Cambial structure and activity of Ficus rumphii Blume vary withthe changes in local climate. The cambial cells start swellingearly in April prior to the onset of periclinal divisions whichare most frequent in August. Cell division stops in October.During the growth season, initiation as well as cessation ofthe phloem production precedes that of xylem. A moderately hightemperature is correlated with the cambial reactivation. Onceinitiated, the activity continues at relatively low temperatures.Hot and dry environment favours the phloem production, whereashot and moderately humid conditions induce xylogenesis. Thesize and relative proportion of cambial initials also changewith season. Fusiform initials are shorter and broader duringthe rainy season (July–September) than for the rest ofthe year. Multiseriate and triseriate rays, as also the tallrays, outnumber the other types of rays throughout the year. Ficus rumphii, vascular cambium, phenology, climatic variation  相似文献   

18.
Endogenous levels of cambial region abscisic acid (ABA) were quantified by immunoassay and assessed together with cambial growth activity in poplar (Populus nigra L. × P. maximowiczii Henry, clone Kamabuchi) over the course of a growing season. The level of cambial region ABA increased from spring to late-summer but decreased sharply in autumn. Cambial growth activity, measured as the radial number of undifferentiated cambial cells and enlarging xylem cells, also increased from spring to summer and decreased sharply in autumn, indicating the onset of cambial dormancy. Exogenous ABA, applied laterally to poplar stems at two times within the growing season, enhanced cambial growth activity, as the radial number of undifferentiated cambial cells increased in ABA-treated trees subsequent to the two application times. Xylem cell development was also affected by exogenous ABA as fibre length increased significantly in ABA-treated trees at both application times. The positive correlation of cambial region ABA and cambial growth activity as well as the positive effects of exogenous ABA application thereon sheds new light on the role of this hormonal growth regulator.  相似文献   

19.
The interrelationship among seasonality of cambium, wood formation, cell size variation, lignification, tree phenology and climatic factors has been examined in Moringa oleifera, a tropical evergreen tree. The vascular cambium in Moringa is a storied with a distinct seasonal variation in its structure due to dimensional changes in rays. Though cambium remains active throughout the year it is sensitive to water availability. Peak cambial cell division and rate of xylem differentiation are influenced by average rainfall during the monsoon period. Cambial cell division reaches higher up in the tree trunk when it is supporting a high number of branches and leaves. Statistical analysis of cell size variation and climate factors revealed that xylem cell development is greatly influenced by rainfall and rarely by temperature. Lengths of fusiform initials and vessel elements are positively correlated. The pattern of lignification during xylogenesis shows that the vessels are the first element to develop lignified walls and ray cells are the last elements to become lignified. Fiber cell walls show more syringyl lignin, while the cell walls of other xylem elements are characterized by relatively more guaiacyl lignin units.  相似文献   

20.
Vascular cambium in Guayule, a rubber producing Mexican shrubof Asteraceae family is non-storied. Cambial activity variesperiodically, and the vascular cambium and its immediate derivativesdo not contain rubber. However, as the xylem and phloem parenchymacells derived from the vascular cambium age, rubber depositionstarts from the cell periphery along the walls and later towardstheir cell lumen. Though the sieve tubes and companion cellsof phloem contain no rubber, all parenchyma cells of xylem andphloem, show the presence of rubber, though its amount varies.However, certain lignified xylem ray cells and lignified pithcells are devoid of rubber accumulation. Microfluorescence studiesshow that the epithelial, phloem ray parenchyma, cortical andpith cells, in descending order, have the highest to lowestrubber content. The size and number of rubber particles observedin the parenchyma cells are greatest during the period of cambialdormancy than in an active cambial period Cambium, guayule, rubber  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号