首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymatic nitration of tryptophan derivatives by oxidation of nitrite has been studied using lactoperoxidase and horseradish peroxidase, and compared with the chemical nitration produced by nitrogen dioxide and peroxynitrite. HPLC, mass spectra and NMR analysis of the mixture of products clearly show that nitration occurs at position 4-, 6-, 7-, and N1 of the indole ring, and nitrosation at position N1. Kinetic studies performed on peroxidase/NO2-/H2O2 systems showed substrate saturation behavior with all the tryptophan derivatives employed. The rate dependence on nitrite concentration was found to be linear with horseradish peroxidase while it exhibited saturation behavior with lactoperoxidase. The composition of the product mixture depends on the nitrating agent. While the production of 4-nitro, 6-nitro, 7-nitro and N1-nitro derivatives follows a similar trend, indicating that they are formed according to a similar mechanism, the ratio between the N1-nitroso derivative and other derivatives depends markedly on the nitrite concentration when tryptophan modification is performed by the peroxidase/H2O2/nitrite systems. Analysis of the data indicates that at low nitrite concentration the enzymatic reaction occurs through the classical peroxidase cycle. At high nitrite concentration the reaction proceeds through a different intermediate that we assume to be a protein bound peroxynitrite species.  相似文献   

2.
Peroxynitrite (ONOO(-)), a reactive nitrogen species, is capable of nitrating tyrosine residue of proteins. Here we show in vitro evidence that plant phenolic compounds can also be nitrated by an ONOO(-)-independent mechanism. In the presence of NaNO(2), H(2)O(2), and horseradish peroxidase (HRP), monophenolic p-coumaric acid (p-CA, 4-hydroxycinnamic acid) was nitrated to form 4-hydroxy-3-nitrocinnamic acid. The reaction was completely inhibited by KCN, an inhibitor for HRP. The antioxidant ascorbate suppressed p-CA nitration and its suppression time depended strongly on ascorbate concentration. We conclude that nitrogen dioxide radical (NO(2)(radical)), but not ONOO(-), produced by a guaiacol peroxidase is the intermediate for phytophenolic nitration.  相似文献   

3.
Myeloperoxidase is a heme enzyme of neutrophils that uses hydrogen peroxide to oxidize chloride to hypochlorous acid. Recently, it has been shown to catalyze nitration of tyrosine. In this study we have investigated the mechanism by which it oxidizes nitrite and promotes nitration of tyrosyl residues. Nitrite was found to be a poor substrate for myeloperoxidase but an excellent inhibitor of its chlorination activity. Nitrite slowed chlorination by univalently reducing the enzyme to an inactive form and as a consequence was oxidized to nitrogen dioxide. In the presence of physiological concentrations of nitrite and chloride, myeloperoxidase catalyzed little nitration of tyrosyl residues in a heptapeptide. However, the efficiency of nitration was enhanced at least 4-fold by free tyrosine. Our data are consistent with a mechanism in which myeloperoxidase oxidizes free tyrosine to tyrosyl radicals that exchange with tyrosyl residues in peptides. These peptide radicals then couple with nitrogen dioxide to form 3-nitrotyrosyl residues. With neutrophils, myeloperoxidase-dependent nitration required a high concentration of nitrite (1 mM), was doubled by tyrosine, and increased 4-fold by superoxide dismutase. Superoxide is likely to inhibit nitration by reacting with nitrogen dioxide and/or tyrosyl radicals. We propose that at sites of inflammation myeloperoxidase will nitrate proteins, even though nitrite is a poor substrate, because the co-substrate tyrosine will be available to facilitate the reaction. Also, production of 3-nitrotyrosine will be most favorable when the concentration of superoxide is low.  相似文献   

4.
Mitochondria are primary loci for the intracellular formation and reactions of reactive oxygen and nitrogen species including superoxide (O???), hydrogen peroxide (H?O?) and peroxynitrite (ONOO?). Depending on formation rates and steady-state levels, the mitochondrial-derived short-lived reactive species contribute to signalling events and/or mitochondrial dysfunction through oxidation reactions. Among relevant oxidative modifications in mitochondria, the nitration of the amino acid tyrosine to 3-nitrotyrosine has been recognized in vitro and in vivo. This post-translational modification in mitochondria is promoted by peroxynitrite and other nitrating species and can disturb organelle homeostasis. This study assesses the biochemical mechanisms of protein tyrosine nitration within mitochondria, the main nitration protein targets and the impact of 3-nitrotyrosine formation in the structure, function and fate of modified mitochondrial proteins. Finally, the inhibition of mitochondrial protein tyrosine nitration by endogenous and mitochondrial-targeted antioxidants and their physiological or pharmacological relevance to preserve mitochondrial functions is analysed.  相似文献   

5.
Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration.  相似文献   

6.
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzed nitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3-8 was the largest at pH 6 (37 degrees C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, only cytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron-nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost.  相似文献   

7.
Tyrosine nitration is a common modification to proteins in vivo, but the reactive nitrogen species responsible for nitration are often studied in vitro using just the amino acid tyrosine in simple phosphate solutions. To investigate which reactive nitrogen species could nitrate proteins in a complex biological system, we exposed rat heart and brain homogenates to peroxynitrite, nitric oxide under aerobic conditions, and other putative nitrating agents. Peroxynitrite was by far the most efficient nitrating agent when alternative targets were available to compete with tyrosine. Curiously, proteins in heart homogenates were substantially more resistant to nitration than brain homogenates. Ultrafiltration to remove low molecular weight compounds made the heart proteins equally susceptible as the brain proteins to nitration. Endogenous ascorbate and free thiols had little effect on nitration by peroxynitrite in either heart or brain. However, accumulation of urate formed by the oxidation of hypoxanthine by xanthine dehydrogenase and oxidase in heart appeared to be the major inhibitor of nitration. Heart homogenates treated with uricase, which converts urate to allantoin, showed equivalent nitration as in brain homogenates. Urate, as assayed by HPLC, was 58 +/- 8 microM in heart but only 4 +/- 2 microM in brain homogenates. Although xanthine dehydrogenase conversion to a free radical-producing oxidase can serve as an important source of superoxide and hydrogen peroxide during ischemia/reperfusion, our results suggest that urate formation by xanthine dehydrogenase may provide a significant antioxidant defense against peroxynitrite and related nitric oxide-derived oxidants.  相似文献   

8.
Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.  相似文献   

9.
Abstract

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.  相似文献   

10.
Liu D  Ling X  Wen J  Liu J 《Journal of neurochemistry》2000,75(5):2144-2154
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration.  相似文献   

11.
Peroxynitrite and nitrogen dioxide (NO2) are reactive nitrogen species that have been implicated as causal factors in neurodegenerative conditions. Peroxynitrite-induced nitration of tyrosine residues in tyrosine hydroxylase (TH) may even be one of the earliest biochemical events associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage to dopamine neurons. Exposure of TH to peroxynitrite or NO2 results in nitration of tyrosine residues and modification of cysteines in the enzyme as well as inactivation of catalytic activity. Dopamine (DA), its precursor 3,4-dihydroxyphenylalanine, and metabolite 3,4-dihydroxyphenylacetic acid completely block the nitrating effects of peroxynitrite and NO2 on TH but do not relieve the enzyme from inhibition. o-Quinones formed in the reaction of catechols with either peroxynitrite or NO2 react with cysteine residues in TH and inhibit catalytic function. Using direct, real-time evaluation of tyrosine nitration with a green fluorescent protein-TH fusion protein stably expressed in intact cells (also stably expressing the human DA transporter), DA was also found to prevent NO2-induced nitration while leaving TH activity inhibited. These results show that peroxynitrite and NO2 react with DA to form quinones at the expense of tyrosine nitration. Endogenous DA may therefore play an important role in determining how DA neurons are affected by reactive nitrogen species by shifting the balance of their effects away from tyrosine nitration and toward o-quinone formation.  相似文献   

12.
Fontana M  Blarzino C  Pecci L 《Amino acids》2012,42(5):1857-1865
The results of the present investigation show the susceptibility of tyrosine to undergo visible light-induced photomodification to 3-nitrotyrosine in the presence of nitrite and riboflavin, as sensitizer. By changing H2O by D2O, it could be established that singlet oxygen has a minor role in the reaction. The finding that nitration of tyrosine still occurred to a large extent under anaerobic conditions indicates that the process proceeds mainly through a type I mechanism, which involves the direct interaction of the excited state of riboflavin with tyrosine and nitrite to give tyrosyl radical and nitrogen dioxide radical, respectively. The tyrosyl radicals can either dimerize to yield 3,3′-dityrosine or combine with nitrogen dioxide radical to form 3-nitrotyrosine. The formation of 3-nitrotyrosine was found to increase with the concentration of nitrite added and was accompanied by a decrease in the recovery of 3,3′-dityrosine, suggesting that tyrosine nitration competes with dimerization reaction. The riboflavin photosensitizing reaction in the presence of nitrite was also able to induce nitration of tyrosine residues in proteins as revealed by the spectral changes at 430 nm, a characteristic absorbance of 3-nitrotyrosine, and by immunoreactivity using 3-nitrotyrosine antibodies. Since riboflavin and nitrite are both present endogenously in living organism, it is suggested that this pathway of tyrosine nitration may potentially occur in tissues and organs exposed to sunlight such as skin and eye.  相似文献   

13.
Reactive intermediates derived from nitric oxide ((*)NO) are thought to play a contributing role in disease states associated with inflammation and infection. We show here that glutathione S-transferases (GSTs), principal enzymes responsible for detoxification of endogenous and exogenous electrophiles, are susceptible to inactivation by reactive nitrogen species (RNS). Treatment of isolated GSTs or rat liver homogenates with either peroxynitrite, the myeloperoxidase/hydrogen peroxide/nitrite system, or tetranitromethane, resulted in loss of GST activity with a concomitant increase in the formation of protein-associated 3-nitrotyrosine (NO(2)Tyr). This inactivation was only partially (<25%) reversible by dithiothreitol, and exposure of GSTs to hydrogen peroxide or S-nitrosoglutathione was only partially inhibitory (<25%) and did not result in protein nitration. Thus, irreversible modifications such as tyrosine nitration may have contributed to GST inactivation by RNS. Since all GSTs contain a critical, highly conserved, active-site tyrosine residue, we postulated that this Tyr residue might present a primary target for nitration by RNS, thus leading to enzyme inactivation. To directly investigate this possibility, we analyzed purified mouse liver GST-mu, following nitration by several RNS, by trypsin digestion, HPLC separation, and matrix-assisted laser desorption/ionization-time of flight analysis, to determine the degree of tyrosine nitration of individual Tyr residues. Indeed, nitration was found to occur preferentially on several tyrosine residues located in and around the GST active site. However, RNS concentrations that resulted in near complete GST inactivation only caused up to 25% nitration of even preferentially targeted tyrosine residues. Hence, nitration of active-site tyrosine residues may contribute to GST inactivation by RNS, but is unlikely to fully account for enzyme inactivation. Overall, our studies illustrate a potential mechanism by which RNS may promote (oxidative) injury by environmental pollutants in association with inflammation.  相似文献   

14.
Carbon dioxide interacts both with reactive nitrogen species and reactive oxygen species. In the presence of superoxide, NO reacts to form peroxynitrite that reacts with CO2 to give nitrosoperoxycarbonate. This compound rearranges to nitrocarbonate which is prone to further reactions. In an aqueous environment, the most probable reaction is hydrolysis producing carbonate and nitrate. Thus the net effect of CO2 is scavenging of peroxynitrite and prevention of nitration and oxidative damage. However, in a nonpolar environment of membranes, nitrocarbonate undergoes other reactions leading to nitration of proteins and oxidative damage. When NO reacts with oxygen in the absence of superoxide, a nitrating species N2O3 is formed. CO2 interacts with N2O3 to produce a nitrosyl compound that, under physiological pH, is hydrolyzed to nitrous and carbonic acid. In this way, CO2 also prevents nitration reactions. CO2 protects superoxide dismutase against oxidative damage induced by hydrogen peroxide. However, in this reaction carbonate radicals are formed which can propagate the oxidative damage. It was found that hypercapnia in vivo protects against the damaging effects of ischemia or hypoxia. Several mechanisms have been suggested to explain the protective role of CO2 in vivo. The most significant appears to be stabilization of the iron-transferrin complex which prevents the involvement of iron ions in the initiation of free radical reactions.  相似文献   

15.
Peroxynitrite reactivity with amino acids and proteins   总被引:11,自引:0,他引:11  
Alvarez B  Radi R 《Amino acids》2003,25(3-4):295-311
Summary. Peroxynitrite, the product of the fast reaction between nitric oxide (NO) and superoxide O2 radicals, is an oxidizing and nitrating agent which is able to traverse biological membranes. The reaction of peroxynitrite with proteins occurs through three possible pathways. First, peroxynitrite reacts directly with cysteine, methionine and tryptophan residues. Second, peroxynitrite reacts fast with transition metal centers and selenium-containing amino acids. Third, secondary free radicals arising from peroxynitrite homolysis such as hydroxyl and nitrogen dioxide, and the carbonate radical formed in the presence of carbon dioxide, react with protein moieties too. Nitration of tyrosine residues is being recognized as a marker of the contribution of nitric oxide to oxidative damage. Peroxynitrite-dependent tyrosine nitration is likely to occur through the initial reaction of peroxynitrite with carbon dioxide or metal centers leading to secondary nitrating species. The preferential protein targets of peroxynitrite and the role of proteins in peroxynitrite detoxifying pathways are discussed.  相似文献   

16.
Tyrosine nitration is becoming increasingly recognized as a prevalent, functionally significant post-translational protein modification that serves as an indicator of nitric oxide (√NO)-mediated oxidative inflammatory reactions. Nitration of proteins modulates catalytic activity, cell signaling and cytoskeletal organization. Several reactions mediate protein nitration, and all predominantly depend on √NO- and nitrite-dependent formation of nitrogen dioxide, a species capable of nitrating aromatic amino acids, nucleotides and unsaturated fatty acids. Here, we review the mechanisms that mediate in vivo protein nitration and how nitration of specific tyrosine residues impacts on protein function.  相似文献   

17.
Mallozzi C  Di Stasi AM  Minetti M 《FEBS letters》2001,503(2-3):189-195
The nitration of tyrosine residues in protein occurs through the action of reactive oxygen and nitrogen species and is considered a marker of oxidative stress under pathological conditions. The most active nitrating species so far identified is peroxynitrite, the product of the reaction between nitric oxide and superoxide anion. Previously, we have reported that in erythrocytes peroxynitrite irreversibly upregulates lyn, a tyrosine kinase of the src family. In this study we investigated the possible role of tyrosine nitration in the mechanism of lyn activation. We found that tyrosine containing peptides modelled either on the C-terminal tail of src kinases or corresponding to the first 15 amino acids of human erythrocyte band 3 were able to activate lyn when the tyrosine was substituted with 3-nitrotyrosine. The activity of nitrated peptides was shared with phosphorylated but not with unphosphorylated, chlorinated or scrambled peptides. Recombinant lyn src homology 2 (SH2) domain blocked the capacity of the band 3-derived nitrotyrosine peptide to activate lyn and we demonstrated that this peptide specifically binds the SH2 domain of lyn. We propose that nitropeptides may activate src kinases through the displacement of the phosphotyrosine in the tail from its binding site in the SH2 domain. These observations suggest a new mechanism of peroxynitrite-mediated signalling that may be correlated with the upregulation of tyrosine phosphorylation observed in several pathological conditions.  相似文献   

18.
Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils.  相似文献   

19.
In the literature, biological tyrosine nitrations have been reported to depend not only on peroxynitrite but also on nitrite/hydrogen peroxide linked to catalysis by myeloperoxidase. In endotoxin-stimulated RAW 264.7 macrophages, we have detected a major nitrotyrosine positive protein band around 72 kDa and identified it as prostaglandin endoperoxide synthase-2 (PGHS-2). Isolated PGHS-2 in absence of its substrate arachidonate was not only tyrosine-nitrated with peroxynitrite, but also with nitrite/hydrogen peroxide in complete absence of myeloperoxidase. Our data favor an autocatalytic activation of nitrite by PGHS-2 with a subsequent nitration of the essential tyrosine residue in the cyclooxygenase domain. Under inflammatory conditions, nitrite formed via NO-synthase-2 may therefore act as an endogenous regulator for PGHS-2 in stimulated macrophages. Nitration of PGHS-2 by the autocatalytic activation of nitrite further depends on the intracellular concentration of arachidonate since arachidonate reacted competitively with nitrite and could prevent PGHS-2 from nitration when excessively present.  相似文献   

20.
《Free radical research》2013,47(6):537-547
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号