首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On the genesis of cellular communication   总被引:12,自引:0,他引:12  
  相似文献   

2.
0031供应链;;非线性优化模型;;广义运输方式分析了以制造商为核心的供应链的特征,构建了该类供应链的模型,对该供应链中原材料供给、原材料运输、产品生产、产品运输和产品销售等环节的费用情况进行详细分析;在考虑到运输商运输能力、  相似文献   

3.
4.
The review considers key issues of historical development of the nervous system, including evolution of the brain intercellular contacts and neurotransmitter systems. Special attention is given to the structural-functional organization of the central nervous system in a freshwater pulmonate gastropod, Lymnaea stagnalis.  相似文献   

5.
6.
7.

Introduction

Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear.

Methods

This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined.

Results

TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used.

Conclusions

Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.  相似文献   

8.
This short review traces how our knowledge of the molecular mechanisms of cellular movements originated and developed over the past 50 years. Work on actin-based and microtubule-based movements developed in different ways, but in both fields, the discovery of the key proteins drove progress. Starting from an inventory of zero molecules in 1960, both fields matured spectacularly, so we now know the atomic structures of the important proteins, understand the kinetics and thermodynamics of their interactions, have documented how the molecules behave in cells, and can test theories with molecularly explicit computer simulations of cellular processes.  相似文献   

9.
An attempt was undertaken to apply the concept elaborated for the evolution of multicellular organisms to that of unicellular eucaryotes. The latter's meiosis was formed on the basis of combination on three intracellular processes: 1) homologous DNA recombination, 2) chromosome disjunction with the assistance of mitotic apparatus, and 3) formation of "linear" chromosome elements consisting of specific proteins. Mechanism of homologous chromosome recombination was inherited from the archibacteria, while both the mitotic apparatus and "linear" chromosome elements emerged de novo. These elements appeared (resulting from appearance of the meiosis-specific proteins) as a complication of cohesion filaments, arising at the boundary between the sister chromatids after DNA replication. Homologous chromosome recombination made it possible for the chromosomes of diploid organisms to join pairwise by means of Holliday structures, while temporary blocking of hydrolysis of the linear elements at centromeres made it possible for the kinetochores to acquire unipolarity and for the sister chromatids to move to the same pole. All these provided for reduction of the chromosome number. Such a type of the reduction of chromosome number was retained by the extant imperfect ascomycetes Schizosaccharomyces pombe and Aspergillus nidulans, and by the infusorian Tetrahyrmena thermophila. It was the derivative of specific proteins, i.e. synaptonemal complexes (SCs). that appeared to be aromorphosis; they came to existence due to the pairwise joining of the chromosome "linear" elements by means of protein "zipper". The SCs join homologous chromosomes temporarily at the prophase of meiotic reduction division, thus optimizing condition for the crossing over and chiasma formation. The latter and the kinetochore unipolarity both provide for the chromosome disjunction. Kinetochore unipolarity is caused by the protein shugoshin which appears at meiotic prophase I and blocks cohesin hydrolysis at centromeres when anaphase I begins. This type of reductional division became the basis of the classical meiosis in the overwhelming majority of unicellular and multicellular organisms over all eucaryote kingdoms.  相似文献   

10.
The kinetics of signaling endosome retrograde transport along axons is analyzed and offered as evidence that such transport is more efficient than diffusion or calcium wave-based signaling systems over even relatively small distances. Evidence is provided to support the signaling endosome hypothesis and to expand the hypothesis to include signaling in many cell types and many cellular dimensions. Finally, a saltatory, regenerating inositol 1,4,5-trisphosphate wave model is offered to reconcile current discrepancies in the literature regarding endosomal-based retrograde signaling.  相似文献   

11.
Cell-to-cell bacterial communication via diffusible signals is addressed and the conceptual framework in which quorum sensing is usually described is evaluated. By applying equations ruling the physical diffusion of the autoinducer molecules, one can calculate the gradient profiles that would occur either around a single cell or at the center of volumes of increasing size and increasing cell densities. Water-based matrices at 25 °C and viscous biofilms at colder temperatures are compared. Some basic consequences relevant for the field of microbial signalling arise. As regards induction, gradient-mixing dynamics between as little as two cells lying at a short distance appears to be sufficient for the buildup of a concentration reaching the known thresholds for quorum sensing. A straight line in which the highest concentrations occur is also created as a consequence of the gradient overlap geometry, providing an additional signal information potentially useful for chemotactic responses. In terms of whole population signalling, it is shown how the concentration perceived by a cell in the center is critically dependent not only on the cell density but also on the size of the biofilm itself. Tables and formulas for the practical prediction of N -acyl homoserine lactones concentrations at desired distances in different cell density biofilms are provided.  相似文献   

12.
The biochemistry and leaf anatomy of plants using C4 photosynthesis promote the concentration of atmospheric CO2 in leaf tissue that leads to improvements in growth and yield of C4 plants over C3 species in hot, dry, high light, and/or saline environments. C4 plants like maize and sugarcane are significant food, fodder, and bioenergy crops. The C4 photosynthetic pathway is an excellent example of convergent evolution, having evolved in multiple independent lineages of land plants from ancestors employing C3 photosynthesis. In addition to C3 and C4 species, some plant lineages contain closely related C3–C4 intermediate species that demonstrate leaf anatomical, biochemical, and physiological characteristics between those of C3 plants and species using C4 photosynthesis. These groups of plants have been extremely useful in dissecting the modifications to leaf anatomy and molecular biology, which led to the evolution of C4 photosynthesis. It is now clear that great variation exists in C4 leaf anatomy, and diverse molecular mechanisms underlie C4 biochemistry and physiology. However, all these different paths have led to the same destination—the expression of a C4 CO2 concentrating mechanism. Further identification of C4 leaf anatomical traits and molecular biological components, and understanding how they are controlled and assembled will not only allow for additional insights into evolutionary convergence, but also contribute to sustainable food and bioenergy production strategies.  相似文献   

13.
14.
Several cyclic processes take place within a single organism. For example, the cell cycle is coordinated with the 24 h diurnal rhythm in animals and plants, and with the 40 min ultradian rhythm in budding yeast. To examine the evolution of periodic gene expression during these processes, we performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal‐regulated and ultradian‐regulated genes are not generally cell‐cycle‐regulated, they tend to have cell‐cycle‐regulated paralogues. Thus, diverged temporal expression of paralogues seems to facilitate cellular orchestration under different periodic stimuli. Lineage‐specific functional repertoires of periodic‐associated paralogues imply that this mode of regulation might have evolved independently in several organisms.  相似文献   

15.
In this paper we review some recent results on the evolution of probability measures under cellular automata acting on a fullshift. In particular we discuss the crucial role of the attractiveness of maximal measures. We enlarge the context of the results of a previous study of topological Markov chains that are Abelian groups; the shift map is an automorphism of this group. This is carried out by studying the dynamics of Markov measures by a particular additive cellular automata. Many of these topics were within the focus of Francisco Varela's mathematical interests.  相似文献   

16.
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.  相似文献   

17.
UV-irradiation of E. coli induces a two fold increase in ATP pool in the first 20 min. Afterwards, in RecA+ strains ATP level drops quickly below values of non irradiated cells. Mutants of E. coli defective in RecA protein or with either RecA protease activity deficient or protease resistant LexA repressor do not present this decrease, showing that it is due to cleavage of LexA repressor by RecA protease. The ATP increase produced in the first 20 min is dependent on RecBC exonuclease activity and it must be due to substrate level phosphorylation since an uncoupler such as dinitrophenol does not affect it.  相似文献   

18.
Retinoic acid (a possible morphogen), its biological precursor retinol, and certain synthetic derivatives of retinol profoundly change junctional intercellular communication and growth (saturation density) in 10T 1/2 and 3T3 cells and in their transformed counterparts. The changes correlate: growth decreases as the steady-state junctional permeability rises, and growth increases as that permeability falls. Retinoic acid and retinol exert quite different steady-state actions on communication at noncytotoxic concentrations in the normal cells: retinoic acid inhibits communication at 10(-10)-10(-9) M and enhances at 10(-9)-10(-7) M, whereas retinol only enhances (10(-8)-10(-6) M). In v-mos-transformed cells the enhancement is altogether lacking. But regardless of the retinoid or cell type, all growth responses show essentially the same dependence on junctional permeability. This is the expected behavior if the cell-to-cell channels of gap junctions disseminate growth-regulating signals through cell populations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号