首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
细菌纤维素研究新进展   总被引:18,自引:0,他引:18  
杨礼富   《微生物学通报》2003,30(4):95-98
综述细菌纤维素的结构和性质、生物合成和分泌的过程与调控以及影响合成的因素。细菌纤维素的化学构成与天然纤维素相近 ,但又有其特殊性。参与纤维素合成的酶有 8种 ,其中纤维素合成酶是合成纤维素的关键酶和特征酶 ,环二鸟苷酸系统是研究得比较透彻的纤维素合成调节系统。培养基组成、发酵工艺和设备都会影响细菌纤维素的产量。深入研究细菌纤维素的合成和调节机制有助于揭示植物纤维素的生物合成机理和促进细菌纤维素的大规模商业化应用。  相似文献   

2.
细菌纤维素的研究进展   总被引:13,自引:0,他引:13  
细菌纤维素是由醋酸杆菌属、根瘤菌属、土壤杆菌属、八叠球菌属等的某些细菌在一定条件下产生的,其中最有代表性的细菌是木醋杆菌。与传统植物纤维素相比,细菌纤维素具有很高的化学纯度。主要介绍细菌纤维素性质、生物合成的方法及其在食品工业、造纸工业和作为一种生物材料在医学工程等方面的应用。  相似文献   

3.
植物纤维素生物合成及其相关酶类   总被引:3,自引:0,他引:3  
纤维素是由成千上万个D-葡萄糖分子通过β-1,4糖苷键连接的具有一定立体构象的链状聚合物,其葡萄糖残基约为2000~25000个。它是细胞壁的主要组成成分之一。植物,大多数藻类,一些细菌和真菌甚至有些动物都能合成纤维素。它作为世界上最丰富的,具有巨大商业价值的生物多聚体,几十年来一直受到人们的重视,成为人们的研究热点。尽管如此,这方面的研究仍比较滞后,人们对纤维素生物合成途径及其相关酶类还是知之甚少。近几年来,随着基因组学的发展,关于纤维素的生物合成及相关基因表达调控的研究也成绩斐然,现就高等植物纤维素生物合成途径及其相关的纤维素合成酶的最新研究进展作一介绍。  相似文献   

4.
植物纤维素合成酶基因和纤维素的生物合成   总被引:12,自引:0,他引:12  
纤维素地球上最丰富的生物大分子和最重要的可再生资源,1996年克隆了第一个植物纤维素合成酶基因,植物纤维素的生物合成需要多个纤维素合成酶与其他相关酶如Korrigan纤维素酶,蔗糖合成酶等来共同完成。本文介绍了植物纤维素合成酶基因和纤维素的生物合成途径及其相关基因如蔗糖合成酶基因、KORRIG-AN基因等研究进展。  相似文献   

5.
植物细胞壁纤维素生物合成的调控   总被引:1,自引:0,他引:1  
纤维素是自然界最丰富的生物多聚体,是生物质能源的主要组成物质。植物细胞壁中纤维素的生物合成主要由纤维素合成酶(Cellulose synthase,CesA)催化完成,纤维素的生物合成受到植物激素,信号分子,转录因子以及某些特殊蛋白质的调节。目前的研究集中在对纤维素合酶基因的转录及翻译后修饰的调控。总结了高等植物调控纤维素生物合成的研究近况。  相似文献   

6.
Norwegian技术研究所(Troudheim Norway)的研究人员正在研究由葡萄糖生物合成纤维素,他们发现在60%失去了天然合成纤维素能力的Acetobacter Xylinum菌株中,细菌复杂的质粒系统已被修饰。能合成纤维素的野生菌株含有大量质粒,其大小从16—300千碱基。用化学诱变产生的菌株随着纤维素产物的破裂,失掉一些质粒或得到了另外一些质粒。这就间接说明,质粒在纤维素的合成中具有一定的作用。  相似文献   

7.
担子菌及其木质纤维素降解液在红豆杉细胞培养中的作用   总被引:5,自引:1,他引:4  
研究了担子菌及其木质纤维素降解液在红豆杉细胞培养中的作用,结果表明,担子菌Bds及其木质纤维素降解液制备的诱导子对紫杉醇生物合成具有明显的促进作用,且以木质纤维素发酵致第7天的降解液对紫杉醇生物合成的诱导作用最明显。因此,可以用担子菌Bds发酵木质纤维素所得的降解液制备紫杉醇生物合成的诱导子。  相似文献   

8.
大肠杆菌卷曲菌毛是其菌体表面的一种含纤维素样蛋白质附着器官,出现在大肠杆菌生理和病理过程中。卷曲菌毛可以通过黏附等作用介导大肠杆菌侵袭宿主;作为一种细菌淀粉样蛋白,卷曲菌毛有可能引起淀粉样蛋白相关疾病;卷曲菌毛可以诱导宿主炎症因子水平升高,引起脓毒血症;卷曲菌毛可以和纤维素等一起构成菌外基质,参与生物膜的形成。我们简要综述了大肠杆菌卷曲菌毛的生物合成、生物学功能和致病性。  相似文献   

9.
细菌纤维素是一种天然的生物质高分子聚合物。相较于植物纤维素,其具有更高的纯度和优异的力学性能。有望作为一种绿色的新型高分子材料被广泛应用。细菌纤维素合酶作为合成细菌纤维素的关键酶,其主导细菌纤维素的合成过程。因此,对其合成机理的探索有助于实现细菌纤维素大量生产和广泛应用。本文从细菌纤维素合酶的基本特性出发,综述了菌种筛选、提升产量和合酶的细胞定位等内容;围绕纤维素合酶的作用机理阐述了体外合成方法的影响因素,以及利用该方法探究各亚基相关作用的现状。以此探究细菌纤维素合酶的合成机制,并提出了当前研究中存在的问题。同时,展望了该领域未来的研究方向,以期通过对合成机理的探讨为细菌纤维素的大规模应用提供理论基础。  相似文献   

10.
反刍动物瘤胃是自然界中最有效的纤维素降解系统,其纤维素降解能力主要源于寄居于其中的纤维素降解细菌、真菌和原虫。其中,瘤胃纤维素降解细菌因数量庞大、种类繁多以及代谢途径丰富,在木质纤维素降解及利用方面发挥着重要作用。本文综述了国内外瘤胃纤维素降解细菌的种类,分析了瘤胃纤维素降解细菌的特性;阐述了瘤胃纤维素降解细菌通过纤维小体对纤维素的降解过程,以及瘤胃微生物之间的相互作用和相互制约关系;简述宏组学技术在开发新纤维素降解菌和新纤维素酶方面的应用,旨在为进一步研究纤维素降解细菌的降解机理,开发新的纤维素菌种和酶资源提供新的思路。  相似文献   

11.
The structure of bacterial cellulose is affected by the bacterial strain used, culture media and cultivation conditions. In this study, acid-treated multi-walled carbon nanotubes (MWNTs) were added into a static culture medium and their effect on bacterial cellulose structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), CP/MAS (13)C NMR and X-ray diffractometry. The bacterial cellulose ribbons and the MWNTs interwound and formed a three-dimensional network architecture. Band-like assemblies with sharp bends and rigidity were also produced in the presence of MWNTs. The intermolecular hydrogen bonds in bacterial cellulose produced in the presence of MWNTs were weakened. The crystal structure, cellulose I(alpha) content, crystallinity index (CrI) and crystallite size all changed. The results may suggest that the acid-treated MWNTs containing hydroxyl groups interact with the sub-elementary bacterial cellulose fibrils, subsequently interfering with the aggregation and crystallization.  相似文献   

12.
Suspended solids in the nutrient medium for Acetobacter xylinium in a rotating disk bioreactor become incorporated into the gelatinous mat of bacterial cellulose as it forms. Embedding fibers of ordinary cellulose creates composites with enhanced strength and the toughness of bacterial cellulose. Purified cellulose and elongated fibers from paper are incorporated differently than are spherical particles such as silica gel. About 90% of the final cellulose can come from scrap paper, and dried composite sheets were much stronger than plain bacterial cellulose per unit area.  相似文献   

13.
A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together.Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together.The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion.  相似文献   

14.
Utilization of -xylose as carbon source for production of bacterial cellulose was studied. Seventeen strains of acetic acid bacteria were screened for their cellulose productivity in -glucose, -xylose, and -xylose/ -xylulose mixed media, respectively. -Xylose was not well metabolized by any bacterial strains that exhibited high cellulose production in -glucose medium. Consequently, bacterial cellulose production in -xylose medium was unsuccessful. -Xylose, however, became utilizable substrate for bacterial strains if xylose-isomerase was added to the medium. Acetobacter xylinus IFO 15606 was the best cellulose producer in -xylose/ -xylulose mixed medium, so cultural conditions were studied for enhanced cellulose production. With pH controlled, the strain could produce cellulose at a yield exceeding 0.3 g per 100 ml of -xylose/ -xylulose mixed medium, which was comparable to the yields in -glucose medium by excellent producers in the literature.  相似文献   

15.
细菌纤维素生产与应用研究进展   总被引:2,自引:0,他引:2  
简要介绍了细菌纤维素菌种选育、发酵条件优化,以及细菌纤维素在食品、医药、高级音响设备振动膜、造纸与无纺织物等方面应用研究的近况。由于细菌纤维素可形成纳米级的极细纤维,具有极高的杨氏模量和机械强度,以及高纯度和高结晶度、高亲水性和生物可降解性等特点,预计不久将成为一种多用途的商品。  相似文献   

16.
Application of bacterial cellulose pellets in enzyme immobilization   总被引:1,自引:0,他引:1  
Over recent years, there has been a growing interest in the use of cellulose materials in bioprocessing technologies. Bacterial cellulose which is the pure cellulose has unique physical properties which differ from those of plant cellulose and has therefore attracted attention as a new functional material. The applications of bacterial cellulose rarely use the pellet type but it has potential in enzyme immobilization since pellet form is usually used in this field. In this research, Glucoamylase which is widely used in the food industry was immobilized on bacterial cellulose beads after testing using various activation procedures. The results showed that the epoxy method with glutaraldehyde coupling was the best method. After comparison of the different types of bacterial cellulose beads for glucoamylase immobilization, the wet bacterial cellulose beads of the smallest size (0.5–1.5 mm) were the best support. The immobilization of enzyme enhances its stability against changes in the pH value and temperature especially in the lower temperature region. The relative activity of the immobilized glucoamylase was still above 77% at pH 2.0 and it was the highest value in the literature. The relative activities were more than 68% in the lower temperature region even at 20 °C. Thus, bacterial cellulose beads are a practical potential support for the preparation of immobilized enzymes in industrial applications.  相似文献   

17.

Bacterial cellulose is composed of an ultrafine nanofiber network and well-ordered structure; therefore, it offers several advantages when used as native polymer or in composite systems.

In this study, a pool of 34 acetic acid bacteria strains belonging to Komagataeibacter xylinus were screened for their ability to produce bacterial cellulose. Bacterial cellulose layers of different thickness were observed for all the culture strains. A high-producing strain, which secreted more than 23 g/L of bacterial cellulose on the isolation broth during 10 days of static cultivation, was selected and tested in optimized culture conditions. In static conditions, the increase of cellulose yield and the reduction of by-products such as gluconic acid were observed. Dried bacterial cellulose obtained in the optimized broth was characterized to determine its microstructural, thermal, and mechanical properties. All the findings of this study support the use of bacterial cellulose produced by the selected strain for biomedical and food applications.

  相似文献   

18.
Nanocomposite films of bacterial cellulose (10-50 wt%) and polyurethane-based resin were prepared and characterized for physical, mechanical and dielectric properties. It was observed that the bacterial cellulose swelled in ethanol, and that bacterial cellulose sheets prepared from fibre suspension in ethanol exhibited a relatively less dense structure in comparison to those processed from aqueous fibre suspension. Nanocomposites fabricated from ethanol suspension also showed inferior mechanical properties but superior dielectric properties. Higher amounts of free proton generated from ethanol can induce more dipole mechanism; therefore, there is higher mobility of proton localized along cellulose chain, indicating that higher dielectric constants can be obtained.  相似文献   

19.
Intact and partially acid hydrolyzed cellulose from Acetobacter xylinum were used as model substrates for cellulose hydrolysis by 1,4-beta-D-glucan-cellobiohydrolase I (CBH I) and 1,4-beta-D-endoglucanase I (EG I) from Trichoderma reesei. A high synergy between CBH I and EG I in simultaneous action was observed with intact bacterial cellulose (BC), but this synergistic effect was rapidly reduced by acid pretreatment of the cellulose. Moreover, a distinct synergistic effect was observed upon sequential endo-exo action on BC, but not on bacterial microcrystalline cellulose (BMCC). A mechanism for endo-exo synergism on crystalline cellulose is proposed where the simultaneous action of the enzymes counteract the decrease of activity caused by undesirable changes in the cellulose surface microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号