首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human placenta and Escherichia coli Phe-tRNA(Phe) and N-AcPhe-tRNA(Phe) binding to human placenta 80S ribosomes was studied at 13 mM Mg2+ and 20 degrees C in the presence of poly(U), (pU)6 or without a template. Binding properties of both tRNA species were studied. Poly(U)-programmed 80S ribosomes were able to bind charged tRNA at A and P sites simultaneously under saturating conditions resulting in effective dipeptide formation in the case of Phe-tRNA(Phe). Affinities of both forms of tRNA(Phe) to the P site were similar (about 1 x 10(7) M-1) and exceeded those to the A site. Affinity of the deacylated tRNA(Phe) to the P site was much higher (association constant > 10(10) M-1). Binding at the E site (introduced into the 80S ribosome by its 60S subunit) was specific for deacylated tRNA(Phe). The association constant of this tRNA to the E site when A and P sites were preoccupied with N-AcPhe-tRNA(Phe) was estimated as (1.7 +/- 0.1) x 10(6) M-1. In the presence of (pU)6, charged tRNA(Phe) bound loosely at the A and P sites, and the transpeptidation level exceeded the binding level due to the exchange with free tRNA from solution. Affinities of aminoacyl-tRNA to the A and P sites in the presence of (pU)6 seem to be the same and much lower than those in the case of poly(U). Without a messenger, binding of the charged tRNA(Phe) to 80S ribosomes was undetectable, although an effective transpeptidation was observed suggesting a very labile binding of the tRNA simultaneously at the A and P sites.  相似文献   

2.
A Salmonella typhimurium LT2 mutant which harbors a mutation (miaB2508::Tn10dCm) that results in a reduction in the activities of the amber suppressors supF30 (tRNA(CUATyr)), supD10 (tRNA(CUASer)), and supJ60 (tRNA(CUALeu)) was isolated. The mutant was deficient in the methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A), a modified nucleoside that is normally present next to the anticodon (position 37) in tRNAs that read codons that start with uridine. Consequently, the mutant had i6A37 instead of ms2io6A37 in its tRNA. Only small amounts of io6A37 was found. We suggest that the synthesis of ms2io6A occurs in the following order: A-37-->i6A37-->ms2i6A37-->ms2io6A37. The mutation miaB2508::Tn10dCm was 60% linked to the nag gene (min 15) and 40% linked to the fur gene and is located counterclockwise from both of these genes. The growth rates of the mutant in four growth media did not significantly deviate from those of a wild-type strain. The polypeptide chain elongation rate was also unaffected in the mutant. However, the miaB2508::Tn10dCm mutation rendered the cell more resistant or sensitive, compared with a wild-type cell, to several amino acid analogs, suggesting that this mutation influences the regulation of several amino acid biosynthetic operons. The efficiencies of the aforementioned amber suppressors were decreased to as low as 16%, depending on the suppressor and the codon context monitored, demonstrating that the ms2 group of ms2io6A contributes to the decoding efficiency of tRNA. However, the major impact of the ms2io6 modification in the decoding process comes from the io6 group alone or from the combination of the ms2 and io6 groups, not from the ms2 group alone.  相似文献   

3.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

4.
Four mutants of pheV, a gene coding for tRNA(Phe) in Escherichia coli, share the characteristic that when carried in the plasmid pBR322, they lose the capacity of wild-type pheV to complement the thermosensitive defect in a mutant of phenylalanyl-tRNA synthetase. One of these mutants, leading to the change C2----U2 in tRNA(Phe), is expressed about 10-fold lower in transformed cells than wild-type pheV. This mutant, unlike the remaining three (G15----A15, G44----A44, m7G46----A46), can recover the capacity to complement thermosensitivity when carried in a plasmid of higher copy number. The other three mutants, even when expressed at a similar level, remain unable to complement thermosensitivity. A study of charging kinetics suggests that the loss of complementation associated with these mutants is due to an altered interaction with phenylalanyl-tRNA synthetase. The mutant gene pheV (U2), when carried in pBR322, can also recover the capacity to complement thermosensitivity through a second-site mutation outside the tRNA structural gene, in the discriminator region. This mutation, C(-6)----T(-6), restores expression of the mutant U2 to about the level of wild-type tRNA(Phe).  相似文献   

5.
In a poly(U) dependent poly(Phe) synthesis, an unaminoacylated tRNA(phe) binds to a ribosome and inhibits poly(Phe) synthesis in excess tRNA(Phe). A small DNA fragment having a hairpin structure was added to this system and was found to prevent an unaminoacylated tRNA(phe) from binding to a ribosome and enhance the efficiency of poly(Phe) synthesis in the presence of excess tRNA(phe).  相似文献   

6.
tRNA species in Escherichia coli that translate codons starting with U contain 2-methyl-thio-N6-isopentenyl-adenosine in position 37, 3' adjacent to the anticodon. The role of this hypermodification in protein synthesis and trp operon attenuation has been investigated. Temperature-jump relaxation methods have been applied to study the interaction between E. coli tRNAPro, with anticodon VGG (V is uridine-5-oxyacetic acid) complementary to that of tRNATrp, and three species of E. coli tRNATrp: wild type tRNATrp (with ms2i6A37 and G24), UGA suppressor tRNATrp (with ms2i6A37 and A24 in the dihydrouridine stem but the same anticodon CCA), and the same suppressor molecule but ms2i6A-deficient as a result of the mutation miaA. Complex formation between tRNAPro and ms2i6A-containing tRNATrp shows thermodynamic parameters close to those found for several other pairs of tRNA with complementary anticodons. However, ms2i6A-deficient tRNATrp makes less stable complexes with tRNAPro, which dissociate eightfold faster. No effect on the complementary anticodon interaction of the mutation in the dihydrouridine stem can be detected. When the tRNA analogous to the opal codon, E. coli tRNASerIV (anticodon VGA) replaces tRNAPro in similar experiments, very weak complexes are observed with both normally hypermodified species of tRNATrp, the wild type and UGA suppressor; these show a lifetime about 50-fold shorter than with tRNAPro, but are again similar. No complex formation is detectable with the ms2i6A-deficient species. This may explain why the hypermodification is necessary for the efficient suppression of the UGA terminator of Q beta coat protein in vitro. The data on complexes with tRNAPro suggest that deficiency in ms2i6A may also reduce the efficiency of UGG reading. Thus, miaA may affect trp operon attenuation by slowing translation of the tandem UGG codons in the leader sequence. Temperature-jump differential spectra suggest that ms2i6 stabilizes the anticodon interaction by improved stacking of base 37.  相似文献   

7.
Accuracy in translation of the genetic code into proteins depends upon correct tRNA-mRNA recognition in the context of the ribosome. In human tRNA(Lys,3)UUU three modified bases are present in the anticodon stem-loop--2-methylthio-N6-threonylcarbamoyladenosine at position 37 (ms2t6A37), 5-methoxycarbonylmethyl-2-thiouridine at position 34 (mcm5s2U34) and pseudouridine (psi) at position 39--two of which, ms2t6A37 and mcm5s2U34, are required to achieve wild-type binding activity of wild-type human tRNA(Lys,3)UUU [C. Yarian, M. Marszalek, E. Sochacka, A. Malkiewicz, R. Guenther, A. Miskiewicz and P. F. Agris (2000) Biochemistry, 39, 13390-13395]. Molecular dynamics simulations of nine tRNA anticodon stem-loops with different combinations of nonstandard bases were performed. The wild-type simulation exhibited a canonical anticodon stair-stepped conformation. The ms2t6 modification at position 37 is required for maintenance of this structure and reduces solvent accessibility of U36. Ms2t6A37 generally hydrogen bonds across the loop and may prevent U36 from rotating into solution. A water molecule does coordinate to psi39 most of the simulation time but weakly, as most of the residence lifetimes are <40 ps.  相似文献   

8.
The effect of mutations in ribosomal proteins S4 (rpsD12), S12 (rpsL282) and L7/L12 (rplL265) of Escherichia coli K12 on the EF-Tu-dependent expenditure of GTP during codon-specific elongation (poly(Phe) synthesis on poly(U] and misreading (poly(Leu) synthesis on poly(U], was studied. Under the conditions used the mutations in proteins S4 and L7/L12 did not practically affect the EF-Tu-dependent expenditure of GTR during the poly(Phe) synthesis on poly(U): the GTP/Phe ratio was about 1, as in the case of the wild strain. Under the same conditions, the ribosomes with a mutant S12 protein tended to discard some amount of Phe-tRNA, as a result of which the GTP/Phe ratio increased to about 3. The marked inhibition of misreading by ribosomes with a mutant S12 protein was accompanied by a significant increase of GTP expenditure at the stage of EF-Tu-dependent non-cognate aminoacyl-tRNA binding. In mutant S 12 proteins the GTP/Leu ratio was about 30-40, whereas in the wild type it was about 12. In contrast, stimulation of misreading by ribosomes with mutant S4 and L7/L12 proteins was accompanied by a decrease of the EF-Tu-dependent expenditure of GTP by 2-3 GTP molecules per one Leu residue included into the peptide.  相似文献   

9.
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.  相似文献   

10.
Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature tRNA. This nucleotide change corrects the mismatched C4-A69 base-pair which appears when folding the gene sequence into the cloverleaf structure and it is consistent with the fact that C to U transitions constitute the common editing events affecting plant mitochondrial messenger RNAs. The tRNA(Phe)(GAA) gene is located upstream of the single copy tRNA(Pro)(UGG) gene in both the potato and the bean mitochondrial DNAs. The sequences of potato and bean tRNA(Pro)(UGG) genes are colinear with the sequence of the mature bean mitochondrial tRNA(Pro)(UGG), demonstrating that this tRNA is not edited. A single copy tRNA(Ser)(GCU) gene was found upstream of the tRNA(Phe) gene in the potato mitochondrial DNA. A U6-U67 mismatched base-pair appears in the cloverleaf folding of this gene and is maintained in the mature potato mitochondrial tRNA(Ser)(GCU), which argues in favour of the hypothesis that the editing system of plant mitochondria can only perform C to U or occasionally U to C changes.  相似文献   

11.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

12.
(35)S-labelled tRNA from Escherichia coli was treated with chemical reagents such as CNBr, H(2)O(2), NH(2)OH, I(2), HNO(2), KMnO(4) and NaIO(4), under mild conditions where the four major bases were not affected. Gel filtration of the treated tRNA showed desulphurization to various extents, depending on the nature of the reagent. The treated samples after conversion into nucleosides were chromatographed on a phosphocellulose column. NH(2)OH, I(2) and NaIO(4) reacted with all the four thionucleosides of E. coli tRNA, 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 2-thiocytidine (s(2)C) and 2-methylthio-N(6)-isopentenyladenosine (ms(2)i(6)A), to various extents. CNBr, HNO(2) and NaHSO(3) reacted with s(4)U, mnm(5)s(2)U and s(2)C, but not with ms(2)i(6)A. KMnO(4) and H(2)O(2) were also found to react extensively with thionucleosides in tRNA. Iodine oxidation of (35)S-labelled tRNA showed that only 6% of the sulphur was involved in disulphide formation. Desulphurization of E. coli tRNA with CNBr resulted in marked loss of acceptor activities for glutamic acid, glutamine and lysine. Acceptor activities for alanine, arginine, glycine, isoleucine, methionine, phenylalanine, serine, tyrosine and valine were also affected, but to a lesser extent. Five other amino acids tested were almost unaffected. These results indicate the fate of thionucleosides in tRNA when subjected to various chemical reactions and the involvement of sulphur in aminoacyl-tRNA synthetase recognition of some tRNA species of E. coli.  相似文献   

13.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

14.
The last biosynthetic step for 2-methylthio-N(6)-isopentenyl-adenosine (ms(2)i(6)A), present at position 37 in some tRNAs, consists of the methylthiolation of the isopentenyl-adenosine (i(6)A) precursor. In this work we have reconstituted in vitro the conversion of i(6)A to ms(2)i(6)A within a tRNA substrate using the iron-sulfur MiaB protein, S-adenosylmethionine (AdoMet), and a reducing agent. We show that a synthetic i(6)A-containing RNA corresponding to the anticodon stem loop of tRNA(Phe) is also a substrate. This study demonstrates that MiaB protein is a bifunctional system, involved in both thiolation and methylation of i(6)A. In this process, one molecule of AdoMet is converted to 5'-deoxyadenosine, probably through reductive cleavage and intermediate formation ofa5'-deoxyadenosyl radical as observed in other "Radical-AdoMet" enzymes, and a second molecule of AdoMet is used as a methyl donor as shown by labeling experiments. The origin of the sulfur atom is discussed.  相似文献   

15.
The ribosomal translocation, as measured in vitro by peptide formation on poly(U)-programmed Escherichia coli ribosomes in the presence of ternary complex, deacylated tRNA or N-acetyl-Phe-tRNA, and elongation factor G, is the rate-limiting step of protein synthesis. Elongation factor G stimulates the spontaneous translocation by a factor of about 500. N-Acetyl-Phe-Phe-tRNA(Phe E. coli) is translocated with a rate constant of 1-2 s-1 at 25 degrees C. Translocation of N-acetyl-Phe-Phe-tRNA(Phe yeast) and N-acetyl-Phe-Leu-tRNA(Leu E. coli) under identical conditions proceeds with a rate by about a factor of 2 and 10, respectively, more slowly. The translocation rate, therefore, is influenced by the nature of the tRNAs in the A-site. We can show, furthermore, that also the tRNA in the P-site, and presumably in the E-site as well, influences the rate of translocation. Reduced rates of translocation of noncognate peptidyl-tRNAs are accompanied by preferential dissociation of these tRNAs at the beginning of the translation of a mRNA.  相似文献   

16.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.  相似文献   

17.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

18.
19.
Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.  相似文献   

20.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号