首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aqueous solubility of a single-carbon organic molecule as a function of its size & dipole moment was investigated. The molecular dipole moment was chosen to represent the polar character of a poly-atomic molecule. It is hypothesized here that at a given pH, temperature, and pressure, the solubility of a single-carbon organic molecule in water will be a function of its polar character; namely, dipole moment and of its molecular size. Different forms of the solubility function were tested; it was found that the solubility model, given by Eq. 1, which is based on the polar character and the molecular volume, adequately described the aqueous solubility of single-carbon organic moieties. The aqueous solubility of single-carbon organic solutes exhibits maximum at the condition of high polar character (large dipole moment) and low molecular volume. The general trend of the solubility of single-carbon organic solutes, based on the proposed model (Eq. 1) could be explained in terms of the trade-off between the driving force (degree of polar character of the solute) for solubilization versus the resistance to be solubilized as a result of the entropic effects which increase with increasing molecular volume of the organic moiety.  相似文献   

2.

Background  

Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies [1] involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins α and β from Xenopus laevis egg extracts [2], although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus[3, 4]. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin β and importin α by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay.  相似文献   

3.
Honor thy father and thy mother, say the Holy Scriptures [1], for they at least gave thee this biological life, but honor thy teachers, too, for they gave thee knowledge and example.  相似文献   

4.
With a large number of DNA and protein sequences already known, the crucial question is to find out how the biological function of these macromolecules is "written" in the sequence of nucleotides or amino acids. Biological processes in any living organism are based on selective interactions between particular bio-molecules, mostly proteins. The rules governing the coding of a protein's biological function, i.e. its ability to selectively interact with other molecules, are still not elucidated. In addition, with the rapid accumulation of databases of protein primary structures, there is an urgent need for theoretical approaches that are capable of analysing protein structure-function relationships. The Resonant Recognition Model (RRM) [1, 2] is one attempt to identify the selectivity of protein interactions within the amino acid sequence. The RRM [1, 2] is a physico-mathematical approach that interprets protein sequence linear information using digital signal processing methods. In the RRM the protein primary structure is represented as a numerical series by assigning to each amino acid in the sequence a physical parameter value relevant to the protein's biological activity. The RRM concept is based on the finding that there is a significant correlation between spectra of the numerical presentation of amino acids and their biological activity. Once the characteristic frequency for a particular protein function/interaction is identified, it is possible then to utilize the RRM approach to predict the amino acids in the protein sequence, which predominantly contribute to this frequency and thus, to the observed function, as well as to design de novo peptides having the desired periodicities. As was shown in our previous studies of fibroblast growth factor (FGF) peptidic antagonists [2, 3] and human immunodeficiency virus (HIV) envelope agonists [2, 4], such de novo designed peptides express desired biological function. This study utilises the RRM computational approach to the analysis of oncogene and proto-oncogene proteins. The results obtained have shown that the RRM is capable of identifying the differences between the oncogenic and proto-oncogenic proteins with the possibility of identifying the "cancer-causing" features within their protein primary structure. In addition, the rational design of bioactive peptide analogues displaying oncogenic or proto-oncogenic-like activity is presented here.  相似文献   

5.
Development of addiction to alcohol or other substances can be attributed in part to exposure-dependent modifications at synaptic efficacy leading to an organism which functions at an altered homeostatic setpoint. Genetic factors may also influence setpoints and the stability of the homeostatic system of an organism. Quantitative genetic analysis of voluntary alcohol drinking, and mapping of the involved genes in the quasi-congenic Recombinant QTL Introgression strain system, identified Eac2 as a Quantitative Trait Locus (QTL) on mouse chromosome 6 which explained 18% of the variance with an effect size of 2.09 g/kg/day alcohol consumption, and Grm7 as a quantitative trait gene underlying Eac2 [Vadasz et al. in Neurochem Res 32:1099–1112, 100, Genomics 90:690–702, 102]. In earlier studies, the product of Grm7 mGluR7, a G protein-coupled receptor, has been implicated in stress systems [Mitsukawa et al. in Proc Natl Acad Sci USA 102:18712–18717, 63], anxiety-like behaviors [Cryan et al. in Eur J Neurosci 17:2409–2417, 14], memory [Holscher et al. in Learn Mem 12:450–455, 26], and psychiatric disorders (e.g., [Mick et al. in Am J Med Genet B Neuropsychiatr Genet 147B:1412–1418, 61; Ohtsuki et al. in Schizophr Res 101:9–16, 72; Pergadia et al. in Paper presented at the 38th Annual Meeting of the Behavior Genetics Association, Louisville, Kentucky, USA, 76]. Here, in experiments with mice, we show that (1) Grm7 knockout mice express increased alcohol consumption, (2) sub-congenic, and congenic mice carrying a Grm7 variant characterized by higher Grm7 mRNA drink less alcohol, and show a tendency for higher circadian dark phase motor activity in a wheel running paradigm, respectively, and (3) there are significant genetic differences in Grm7 mRNA abundance in the mouse brain between congenic and background mice identifying brain areas whose function is implicated in addiction related processes. We hypothesize that metabotropic glutamate receptors may function as regulators of homeostasis, and Grm7 (mGluR7) is involved in multiple processes (including stress, circadian activity, reward control, memory, etc.) which interact with substance use and the development of addiction. In conclusion, we suggest that mGluR7 is a significant new therapeutic target in addiction and related neurobehavioral disorders.  相似文献   

6.
In the presence of d-ribulose diphosphate, crystalline ribulose diphosphate carboxylase from Nicotiana tabacum leaves undergoes a profound change in solubility. The solubility change did not involve a Conformational change in molecular volume exceeding 2% as measured by sedimentation velocity suggesting no gross change in quaternary structure. However, the change in solubility did involve a tertiary structural change wherein some previously buried tyrosyl and tryptophyl residues became exposed, as indicated by difference spectrophotometry. Although the enzyme molecule has 8 binding sites for ribulose diphosphate, the Conformational change is complete after 4 substrate molecules are bound. A cooperative action among the subunits is proposed.  相似文献   

7.
Three of the most frequent antitubercular agents employed against Mycobacterium tuberculosis are: Rifampicin, Isoniazid and Pyrazinamide. It has been proven that the use of these antitubercular agents together, shortens the treatment period from 12–18 months to 6 months [1]. In this work we use a new Density Functional Theory chemistry model called CHIH-DFT (Chihuahua-Heterocycles-Density Functional Theory) that reflects the mixture of Hartree Fock exchange and DFT exchange, according to a mixing parameter based on empirical rules suited for heterocyclic systems. This new chemistry model was used to calculate the molecular structure of these antitubercular compounds, as well as their infrared, UV spectra, chemical reactivity and electronic properties. The UV and infrared spectra were obtained by experimental techniques. The calculated molecular structure, UV and IR spectra values from CHIH-DFT were compared with experimentally obtained values and theoretical studies. These results are in good agreement with experimental and theoretical studies. We also predicted using the relative electrophilicity and relative nucleophilicity concepts as defined by Roy et al. [2] the chemical active sites for the three antitubercular compounds as well as their electronegativity, ionization potential, electron affinity, hardness, dipole moment, EHOMO-ELUMO gap energy, etc.   相似文献   

8.
The justification for a less alkaline primordial ocean (than present) is briefly reviewed, along with constraints on aqueous phosphate under such conditions. Based on the assumption that CaHPO4 dihydrate determined the availability of phosphorus species, we have carried out laboratory simulations to determine equilibrium concentrations as a function of pH (in PIPES buffer) with added NaCl and CaCl2. Consistent with expectations, solubility declines with higher pH and [CaCl2], but increases only slightly with [NaCl]. Significantly, PIPES shows no specific effect on the dissolution beyond its influence on pH and ionic strength. Data are also presented on the synthesis of pyrophosphate from the NaOCN/CaHPO4·2H2O system, which could have provided a source of this phosphate anhydride on the early Earth.  相似文献   

9.
A major scab resistance gene initially called Vr1 was identified in the apple cultivar “Regia” derived from the Malus scab resistance source R12740-7A (Russian seedling, RS). A codominant, multiallelic sequence characterized amplified region (SCAR) marker was developed from a random amplified polymorphic DNA marker identified by bulked-segregant analysis. Additional alleles of the AD13 marker locus proved to be informative for the analysis of genetic relationships within Malus including putative relatives of RS. Separate linkage maps were created for the two families derived from crosses with “Regia”. Using phenotypic data from the greenhouse scab tests, the recombination frequency between Vr1 and AD13-SCAR was between 6 and 17%. The Vr1 locus appeared to be closely linked to the Vx [Hemmat et al. J Am Soc Hortic Sci, 127:365–370, 2002], Vr2 [Patocchi et al. Theor Appl Genet, 109:1087–1092, 2004], and the Vh4 gene [Bus et al. Mol Breed, 15:103–116, 2005a]. Our linkage analysis of the molecular markers identified by Hemmat et al. [J Am Soc Hortic Sci, 127:365–370, 2002] for two scab resistance factors from RS (Vr and Vx) indicate that both genes are separated by a large distance on apple linkage group 2 [Boudichevskaia et al. Acta Hortic, 663:171–175, 2004]. This is in agreement with the results of Bus et al., [Mol Breed, 15:103–116, 2005a] who concluded that (1) the RS-derived gene Vh2 is identical to Vr, (2) the RS-derived gene Vh4 is identical to Vx and Vr1, (3) Vh2/Vr and Vh4/Vr1/Vx map on opposite sides of LG 2. One of our main goals was the verification of the Vr1-SCAR within a practical apple-breeding program. The utility of the AD13-SCAR was evident after 2 years under natural scab infection conditions in both families investigated. This is the first report about the confirmation of a molecular marker for a RS resistance factor in a 2-year field experiment. A multiplex polymerase chain reaction assay based on two codominant SCARs for Vf and Vr1 was tested in an apple progeny segregating for both genes. The result of the two-marker approach is discussed with respect to scab races, which are able to overcome the Vf resistance gene.  相似文献   

10.
After the publication of [1], we were alerted to an error in our data. The error was an one-off miscalculation in the extraction of position information for our set of true negatives. Our data set should have used randomly selected non-edited cytosines (C) as true negatives, but the data generation phase resulted in a set of nucleotides that were each one nucleotide downstream of known, unedited cytosines. The consequences of this error are reflected in changes to our results, although the general conclusions presented in our original publication remain largely unchanged.  相似文献   

11.
Several alkali metal hydroxoantimonates, K2[Sb(O)(OH)5], Na[Sb(OH)6], Cs[Sb(OH)6] and Cs2[Sb2(μ-O)2(OH)8] were isolated from aqueous solutions and characterized by single crystal and powder X-ray diffraction studies and by FTIR and thermal analysis. Crystal structures involving [Sb(O)(OH)5]2− were never anticipated before, and this is also the first disclosure of a dinuclear antimonate [Sb2(μ-O)2(OH)8]2−. Aqueous antimonate solutions of different pH were studied by high resolution electrospray mass spectrometry showing pH indifferent spectra and predominance of the mono and dinuclear antimonate species at pH 4-10.  相似文献   

12.
The antibiotic virginiamycin is a combination of two molecules, virginiamycin M1 (VM1) and virginiamycin S1 (VS1) or analogues, which function synergistically by binding to bacterial ribosomes and inhibiting bacterial protein synthesis. Both VM1 and VS1 dissolve poorly in water and are soluble in more hydrophobic solvents. We have recently reported that the 3D conformation of VM1 in CDCl3 solution (Aust. J. Chem. 57:415, 2004; Org. Biomol. Chem. 2:2919, 2004) differs markedly from the conformation bound to a VM1 binding enzyme (Sugantino and Roderick in Biochemistry 41:2209, 2002) and to 50S ribosomes (Hansen et al. in J. Mol. Biol. 330:1061, 2003) as found by X-ray crystallographic studies. We now report the results of further NMR studies and subsequent molecular modeling of VM1 dissolved in CD3CN/H2O and compare the structure with that in CD3OD and CDCl3. The conformations of VM1 in CD3CN/H2O, CD3OD and CDCl3 differ substantially from one another and from the bound form, with the aqueous form most like the bound structure. We propose that the flexibility of the VM1 molecule in response to environmental conditions contributes to its effectiveness as an antibiotic.  相似文献   

13.
14.
15.
The enthalpies of interactions of porcine arterial elastin with alkali metal and alkali earth halides and sulphates were investigated by means of flow microcalorimetry and the stoichiometry measured using radiotracer techniques. In aqueous solutions, all alkali earth halides interacted exothermically at concentrations ranging from 0.01 to 2.5M. All the alkali metal halides, particularly NaCl, exhibited complex concentration-dependent interactions, exothermic at low concentrations and endothermic at high concentrations. Both the anion and cation contributed to the response, although the anion seemed to dominate. SO interacted most strongly of the anions tested. All interactions were reversible in the sense that repeat experiments gave identical results, but the enthalpy of “adsorption” was generally different from that of “desorption.” The enthalpy of interaction depended on the conformation of the elastin in a salt-specific manner. For example, CaCl2 and MgCl2 interacted similarly in water but very differently in 1 : 1 water : methanol. © 1994 John Wiley & Sons, Inc.  相似文献   

16.

Background  

Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation.  相似文献   

17.
18.

Background  

Herpesvirus genes are classified into distinct kinetic groups on the basis of their expression dynamics during lytic growth of the virus in cultured cells at a high, typically 10 plaque-forming units/cell multiplicity of infection (MOI). It has been shown that both the host response and the success of a pathogen are dependent on the quantity of particles infecting an organism. This work is a continuation of an earlier study [1], in which we characterized the overall expression of PRV genes following low-MOI infection. In the present study, we have addressed the question of whether viral gene expressions are dependent on the multiplicity of infection by comparing gene expressions under low and high-MOI conditions.  相似文献   

19.
In this paper, partitioning behaviors of typical neutral (Alanine), acidic (Glutamic acid) and basic (Lysine) amino acids into imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] as extracting solvents were examined. [C6mim][BF4] showed the best efficiency for partitioning of amino acids. The partition coefficients of amino acids in ionic liquids were found to depend strongly on pH of the aqueous solution, amino acid and ionic liquid chemical structures. Different chemical forms of amino acids in aqueous solutions were pH dependent, so the pH value of the aqueous phase was a determining factor for extraction of amino acids into ionic liquid phase. Both water content of ionic liquids and charge densities of their anionic and cationic parts were important factors for partitioning of cationic and anionic forms of amino acids into ionic liquid phase. Extracted amino acids were back extracted into phosphate buffer solutions adjusted on appropriate pH values. The results showed that ionic liquids could be used as suitable modifiers on the stationary phase of an HPLC column for efficient separation of acidic, basic, and neutral amino acids.  相似文献   

20.
Schönherr J  Schreiber L 《Planta》2004,219(3):405-411
Little is known about the permeability of plant cuticles to ionic molecules with hydration shells that render them lipid insoluble and limit their diffusion to narrow aqueous pores. Therefore, the permeation of cuticular membranes to ionised calcium salts with anhydrous molecular weights ranging from 111 to 755 g mol–1 was studied. Penetration was a first-order process and rate constants (k) (proportional to permeability) decreased exponentially with molecular weight. Plots of log k vs. molecular weight had slopes of –2.11×10–3 and –2.80×10–3, respectively, depending on the year in which the cuticular membranes were isolated. This corresponds to decreases in permeability by factors of about 7 to 13 when molecular weight increased from 100 to 500 g mol–1. This size selectivity is small compared to the dependence on molecular weight of solute mobility in Populus cuticles. A decrease in mobility of neutral molecules by more than 3 orders of magnitude has been reported [A. Buchholz et al. (1998) Planta 206:322–328] for the same range of molecular weights. Hence, discrimination of large ionic species diffusing in aqueous pores (polar pathway) is much smaller than that for neutral solutes diffusing in cutin and waxes (lipophilic pathway). This indicates that formulating large solutes as ionic species would be advantageous.Abbreviation CM Cuticular membrane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号