首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of SX2 (X = F, Cl, and Br) to engage in different kinds of noncovalent bonds was investigated by ab initio calculations. SCl2 (SBr2) has two σ-holes upon extension of Cl (Br)?S bonds, and two σ-holes upon extension of S?Cl (Br) bonds. SF2 contains only two σ-holes upon extension of the F?S bond. Consequently, SCl2 and SBr2 form chalcogen and halogen bonds with the electron donor H2CO while SF2 forms only a chalcogen bond, i.e., no F···O halogen bond was found in the SF2:H2CO complex. The S···O chalcogen bond between SF2 and H2CO is the strongest, while the strongest halogen bond is Br···O between SBr2 and H2CO. The nature of these two types of noncovalent interaction was probed by a variety of methods, including molecular electrostatic potentials, QTAIM, energy decomposition, and electron density shift maps. Termolecular complexes X2S···H2CO···SX′2 (X = F, Cl, Br, and X′ = Cl, Br) were constructed to study the interplay between chalcogen bonds and halogen bonds. All these complexes contained S···O and Cl (Br)···O bonds, with longer intermolecular distances, smaller values of electron density, and more positive three-body interaction energies, indicating negative cooperativity between the chalcogen bond and the halogen bond. In addition, for all complexes studied, interactions involving chalcogen bonds were more favorable than those involving halogen bonds.
Graphical Abstract Molecular electrostatic potential and contour map of the Laplacian of the electron density in Cl2S···H2CO···SCl2 complex
  相似文献   

2.
Reactions of lithium halide (LiX, X = F, Cl, Br and I) and methyl halide (CH3X, X = F, Cl, Br and I) have been investigated at the B3LYP/6-31G(d) level of theory using the microhydration model. Beginning with hydrated lithium ion, four or two water molecules have been conveniently introduced to these aqueous-phase halogen-exchange SN2 reactions. These water molecules coordinated with the center metal lithium ion, and also interacted with entering and leaving halogen anion via hydrogen bond in complexes and transition state, which to some extent compensated hydration of halogen anion. At 298 K the reaction profiles all involve central barriers ΔE cent which are found to decrease in the order F > Cl > Br > I. The same trend is also found for the overall barriers (ΔE ovr ) of the title reaction. In the SN2 reaction of sodium iodide and methyl iodide, the activation energy agrees well with the aqueous conductometric investigation.  相似文献   

3.
The insertion reactions of the silylenoid H2SiLiF with SiH3XHn-1 (X = F, Cl, Br, O, N; n = 1, 1, 1, 2, 3) have been studied by DFT calculations. The results indicate that the insertions proceed in a concerted manner, forming H3SiSiH2XHn-1 and LiF. The essence of H2SiLiF insertion into Si-X bonds reactions are the donations of the electrons of X into the p orbital on the Si atom in H2SiLiF and the σ electrons on the Si atom in H2SiLiF to the positive SiH3 group. The order of reactivity by H2SiLiF insertion in vacuum indicates the reaction barriers decrease for the same-row element X from right to left and the same-family element X from up down in the periodic table. The insertion reactions in ether are similar to those in vacuum. The energy barriers in vacuum are higher than those in ether. The silylenoid insertions are thermodynamically exothermic both in vacuum and in ether.  相似文献   

4.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

5.
This paper presents a theoretical study of the effects of substituents (F, Cl, Br, CH3, and CN) on the aromaticity of borazine (B3N3H6), using density functional theory (DFT) and the Hartree-Fock (HF) method. The calculations to optimize the geometries, structural properties, and vibrational frequencies were performed using the same 6–311G(d,p) and 6–311++G(d,p) basis sets, comparing the methods with experimental results. In the analysis of the NICSZZ values, it was found that that replacing the hydrogen atoms by halogen atoms (F, Cl, and Br) and CH3 reduced the aromaticity of the borazine molecule, while use of the CN group resulted in NICSZZ values (0.9–2.0 Å) very close to those of borazine, presenting the following order of increasing aromaticity: B3N3H3-(Br)3?<?B3N3H3-(Cl)3?<?B3N3H3-(F)3?<?B3N3H3-(CH3)3?<?B3N3H6 ~ B3N3H3-(CN)3. All the spectra of the compounds showed only the presence of transition peaks distant from the UV region, reflecting the large energy difference between the HOMO and LUMO orbitals. After the substitution of the borazine ring, all the compounds presented an intensification of the spectrum, with a shift of the maximum absorbance toward red, indicative of a bathochromic effect. There was a direct inverse relation between the energy gap and the maximum wavelength of the compounds.  相似文献   

6.
A series of N4X (X = O, S, Se) compounds have been examined with ab initio and density functional theory (DFT) methods. To our knowledge, these compounds, except for the C2v ring and the C3v towerlike isomers of N4O, are first reported here. The ring structures are the most energetically favored for N4X (X = O and S) systems. For N4Se, the cagelike structure is the most energetically favored. Several decomposition and isomerization pathways for the N4X species have been investigated. The dissociation of C2v ring N4O and N4S structures via ring breaking and the barrier height are only 1.1 and −0.2 kcal mol−1 at the CCSD(T)/6-311+G*//MP2/6-311+G* level of theory. The dissociation of the cagelike N4X species is at a cost of 12.1–16.2 kcal mol−1. As for the towerlike and triangle bipyramidal isomers, their decomposition or isomerization barrier heights are all lower than 10.0 kcal mol−1. Although the CS cagelike N4S isomer has a moderate isomerization barrier (18.3–29.1 kcal mol−1), the low dissociation barrier (−1.0 kcal mol−1) indicates that it will disappear when going to the higher CCSD(T) level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins, using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here. When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented here.  相似文献   

8.
The stable structures and aromatic characters for three cationic X3+ (X = Sc, Y, and La) and three relevant neutral X3Cl (X = Sc, Y, La) clusters are investigated at the DFT and post HF level of theory. The calculated results show that the X3+ cations each has two stable structures: the regular trigon (D3h) and the line (D¥h {{\hbox{D}}_{\infty {\rm{h}}}} ) with the regular trigon (D3h) being the ground state, while for three neutral X3Cl clusters, Sc3Cl has three stable isomers: the trigon-pyramidal (C3v), bidentate (C2v-1), and C2v-2 structures, Y3Cl and La3Cl each has only two stable isomers: the trigon-pyramidal (C3v) and bidentate (C2v-1) structures. The ground states for three X3Cl species are all the bidentate (C2v-1) isomers. The calculations of the resonance energy (RE) and NICS show that trigonal X3+ isomers exhibit higher degree of aromaticity. The detailed molecular orbital analyzes reveal that the isolated trigonal Sc3+ and Y3+ cations each has one delocalized π-type MO and shows single π-aromaticity, while the isolated trigonal La3+ cation has one delocalized σ-type MO and shows single σ-aromaticity. The single π- or σ-aromaticity for X3+ are attributed to the contributions mainly from the d AOs of the corresponding transition metal X atoms. However, when a singly negatively charged counterion Cl- is added to Sc3+, Y3+, and La3+ cations respectively, the aromatic type for the two Sc3+, Y3+ units in the corresponding neutral Sc3Cl, Y3Cl complexes are changed from π-aromaticity into σ-aromaticity, whereas the σ-aromaticity of the La3+ units in the La3Cl complex keeps unchanged in this process. Thus three Sc3+, Y3+, La3+ units in the corresponding X3Cl complexes all have only one σ-type MO and exhibit single σ-aromaticity.  相似文献   

9.
The theoretical study of the interaction between CH2 and fullerene (C60) suggests the existence of an addition reaction mechanism; this feature is studied by applying an analysis of electronic properties. Several different effects are evident in this interaction as a consequence of the particular electronic transfer which occurs during the procedure. The addition or insertion of the methylene group results in a process, where the inclusion of CH2 into a fullerene bond produces the formation of several geometric deformations. A simulation of these procedures was carried out, taking advantage of the dynamic semi-classical Born-Oppenheimer approximation. Dynamic aspects were analyzed at different speeds, for the interaction between the CH2 group and the two bonds: CC (6, 6) and CC (6, 5) respectively on the fullerene (C60) rings. All calculations which involved electrons employed DFT as well as exchange and functional correlation. The results indicate a tendency for the CH2 fragment to attack the CC (6, 5) bond.  相似文献   

10.
We present a systematic investigation of the nature and strength of the hydrogen bonding in HX···HX and CH3X…HX (X = Br, Cl and F) dimers using ab initio MP2/aug-cc-pVTZ calculations in the framework of the quantum theory of atoms in molecules (QTAIM) and electron localisation functions (ELFs) methods. The electron density of the complexes has been characterised, and the hydrogen bonding energy, as well as the QTAIM and ELF parameters, is consistent, providing deep insight into the origin of the hydrogen bonding in these complexes. It was found that in both linear and angular HX…HX and CH3X…HX dimers, F atoms form stronger HB than Br and Cl, but they need short (~2 Å) X…HX contacts.  相似文献   

11.
DFT calculations have been performed on the derivatives of formula CH2OP2 to determine their total energy, the relative energy between the isomers and their geometry. Among compounds with a P-C-P linkage, the most stable one is the 2-hydroxy-1,2-diphosphirene II.1, a three-membered heterocycle with a P=C unsaturation. The phosphavinylidene(oxo)phosphorane HP=C=P(O)H IV.5 (which has the same skeleton as the experimentally obtained Mes*P=C=P(O)Mes*) lies 36.30 kcal mol-1 above it. The least stable compounds are carbenes; the singlet carbenes are more stable than the triplet ones.  相似文献   

12.
Termites produce methane (CH4) as a by-product of microbial metabolism of food in their hindguts, and are one of the most uncertain components of the regional and global CH4 exchange estimates. This study was conducted at Howard Springs near Darwin, and presents the first estimate of CH4 emissions from termites based on replicated in situ seasonal flux measurements in Australian savannas. Using measured fluxes of CH4 between termite mounds and the atmosphere, and between soil and the atmosphere across seasons we determined net CH4 flux within a tropical savanna woodland of northern Australia. By accounting for both mound-building and subterranean termite colony types, and estimating the contribution from tree-dwelling colonies it was calculated that termites were a CH4 source of +0.24 kg CH4-C ha−1 y−1 and soils were a CH4 sink of −1.14 kg CH4-C ha−1 y−1. Termites offset 21% of CH4 consumed by soil resulting in net sink strength of −0.90 kg CH4-C ha−1 y−1 for these savannas. For Microcerotermes nervosus (Hill), the most abundant mound-building termite species at this site, mound basal area explained 48% of the variation in mound CH4 flux. CH4 emissions from termites offset 0.1% of the net biome productivity (NBP) and CH4 consumption by soil adds 0.5% to the NBP of these tropical savannas at Howard Springs.  相似文献   

13.
The H···π and X (X = F, Cl, Br, I)···π interactions between hypohalous acids and benzene are investigated at the MP2/6-311++G(2d,2p) level. Four hydrogen-bonded and three halogen-bonded complexes were obtained. Ab initio calculations indicate that the X···π interaction between HOX and C6H6 is mainly electrostatically driven, and there is nearly an equal contribution from both electrostatic and dispersive energies in the case of XOH–C6H6 complexes. Natural bond orbital (NBO) analysis reveals that there exists charge transfer from benzene to hypohalous acids. Atom in molecules (AIM) analysis locates bond critical points (BCP) linking the hydrogen or halogen atom and carbon atom in benzene.  相似文献   

14.
We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene–BX3 complexes, where X = H, OH, NH2, CH3, CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B–Ccarbene interaction due to the short B–Ccarbene distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH2 > OH > CH3 > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with ∇2 ρ BCP >0, the B–Ccarbene bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ BCP) and HBCP <0, indicating that the potential energy overcomes the kinetic energy density at BCP and the B–Ccarbene bond is a polar covalent bond.  相似文献   

15.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

16.
The Arrhenius kinetic parameters of dissociation reactions and reactions of CF3CH2I with radicals like H, O, and OH are determined using highly accurate first principles calculations. Thermophysical properties like molar heat capacity (Cp), thermal stability index, and the bond dissociation energies are also determined for the CF3CH2I molecule under the PBE/DNP formalism. Since, there are no theoretical study or experimental investigation reports available regarding the dissociation reactions of CF3CH2I and reactions of this molecule with the H and OH radical, a parallel comparative analysis is done with similar iodoalkanes to ascertain the precision of the results obtained. The atmospheric lifetime of 0.54 years is obtained for this molecule.  相似文献   

17.
The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)—the simplest nitro-containing explosive—and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311?+?G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974–13978] that NO3 radical can be formed during the decomposition of nitramine explosives.  相似文献   

18.
Theoretical investigation of Pt(0)-olefin organometallic complexes containing tertiary phosphine ligands was focused on the strength of platinum-olefin electronic interaction. DFT theoretical study of electronic effects in a substantial number of ethylene derivatives was evaluated in terms of the Pt-olefin binding energy using MP2 correlation theory. Organometallics bearing coordinated olefins with general formula (R1R2C = CR3R4)Pt(PH3)2 [R = various substituents] had been selected, including olefins containing both electron-donor substituents as well as electron-withdrawing groups. The stability of the corresponding complexes increases with a strengthening electron-withdrawal ability of the olefin substituents. Figure Representation of (CH2 = CHR)Pt(PPh3)2 and the stability chart  相似文献   

19.
A spectroelectrochemical study of [Ru2X9]n, X=Cl, Br; n=1, 2, 3, 4 has been undertaken. Stable solutions of n=4, 2, 1 can be formed by electrolysis at low temperatures. Analysis of the Vis-NIR spectra of the complexes indicate that the RuII---RIII dimers (n=4) have delocalised mixed valence and that the RuIII---RIII (n=3) dimers have a strong Ru---Ru bond. The more oxidised materials do not form a Ru---Ru bond; the spectroscopic data indicates the RuIII---RIV dimers have localised valency.  相似文献   

20.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet. Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号