首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Widespread mule deer (Odocoilus hemionous) declines coupled with white-tailed deer (O. virginianus) increases prompted us to investigate the role of cougar (Puma concolor) predation in a white-tailed deer, mule deer, and cougar community in northeast Washington, USA. We hypothesized that cougars select for and disproportionately prey on mule deer in such multiple-prey communities. We estimated relative annual and seasonal prey abundance (prey availability) and documented 60 cougar kills (prey usage) from 2002 to 2004. White-tailed deer and mule deer comprised 72% and 28% of the total large prey population and 60% and 40% of the total large prey killed, respectively. Cougars selected for mule deer on an annual basis (αmd = 0.63 vs. αwt = 0.37; P = 0.066). We also detected strong seasonal selection for mule deer with cougars killing more mule deer in summer (αmd = 0.64) but not in winter (αmd = 0.53). Cougars showed no seasonal selection for white-tailed deer despite their higher relative abundance. The mean annual kill interval of 6.68 days between kills varied little by season (winter = 7.0 days/kill, summer = 6.6 days/kill; P = 0.78) or prey species (white-tailed deer = 7.0 days/kill, mule deer = 6.1 days/kill; P = 0.58). Kill locations for both prey species occurred at higher elevations during summer months (summer = 1,090 m, winter = 908 m; P = 0.066). We suspect that cougars are primarily subsisting on abundant white-tailed deer during winter but following these deer to higher elevations as they migrate to their summer ranges, resulting in a greater spatial overlap between cougars and mule deer and disproportionate predation on mule deer.  相似文献   

2.
Studies on predation by the wolf (Canis lupus) have often reported contradictory results about the role of prey density and vulnerability on wolf prey use. We investigated dietary response and prey selection by wolves in a high-density and multi-species ungulate community, analysing scats collected over a period of 11 years in the Casentinesi Forests, Italy. The second most abundant species, wild boar (Sus scrofa), was found to be the main wolf prey, and we did not observe any dietary response of wolves to variations in the density of either primary or secondary prey species. Selection patterns were uniform throughout the study period. Wolves strongly selected for wild boar piglets, while roe deer (Capreolus capreolus) fawns and adults, red deer (Cervus elaphus) adults and fallow deer (Dama dama) adults were avoided. Wolf preference for wild boar was inversely density dependent. Within each species, juveniles were preferred to adults. Medium-sized, young individuals of both wild boar and roe deer were optimal prey, although with different selection patterns related to the different anti-predator strategies adopted by each prey species. The results of this study suggest that in productive ecosystems with high density and high renewal rates of prey, selection patterns by wolves are determined by prey vulnerability, which is connected to prey age and body size. The different patterns of wild boar versus cervids use by wolf across Europe seems to be related to their relative abundances, while the strong selection of wild boar in Italian Apennines with respect to the more frequent avoidance in central-eastern Europe is better explained by higher piglet productivity and smaller body size of adults boar in Mediterranean temperate forests.  相似文献   

3.
猎物匮乏是影响东北虎(Panthera tigris altaica)种群恢复的关键因素之一。容纳量研究是开展东北虎猎物恢复工作的必要前提。通过Maxent模型、聚类分析和训练随机树分类等方法,结合调查数据,预测了吉林省张广才岭南部黄泥河林业局东北虎主要猎物的适宜栖息地空间分布,解译了植被类型,在此基础上基于不同植被类型动物可采食部分代谢能、不同生境等级食物可利用率、马鹿(Cervus elaphus)和狍(Capreolus capreolus)生境等级重叠情况以及动物冬季能量需求,分析了东北虎猎物的冬季营养容纳量。结果表明:黄泥河林业局狍、野猪(Sus scrofa)和马鹿的适宜栖息地分别占研究区域总面积的52.8%、40.7%和25.4%;从猎物获取能量来看,以山杨(Populus davidiana)、桦树(Betula)、核桃楸(Juglans mandshurica)为主的植被类型是马鹿、狍可获得能量较多的生境,以蒙古栎(Quercus mongolica)、核桃楸为主的植被类型是野猪可获得能量较多的生境。东北虎猎物种群的综合冬季营养容纳量为574只马鹿(0.29只/km2),7016只狍(3.54只/km2),4785只野猪(2.38只/km2)。  相似文献   

4.
5.
The alternative prey hypothesis predicts that predators respond both functionally and numerically (with a time lag) to fluctuations in the main prey abundance, which affects the survival of alternative prey. This pattern was found in northern Europe in the community formed by voles (Microtidae), red foxes (Vulpes vulpes) and roe deer (Capreolus capreolus). We studied the same predator—prey community in a temperate latitude where, according to the predation hypothesis, only the functional response of predators to changes in main prey availability should occur. In the years 1997–2007, in western Poland, we estimated the index of common vole (Microtus arvalis) abundance (burrow counts), the density of foxes (spotlight counts), the young production in foxes (young/adult ratio), the index of fox predation on fawns (prey remains near dens) as well as the reproduction index (fawn/female ratio) and density of roe deer (total counts). The vole abundance fluctuated considerably, the young production in foxes did not correlate with the main prey availability, but the density of foxes showed direct numerical response. The index of fox predation on fawns decreased with the vole abundance and negatively affected the fawn/female ratio in roe deer. Thus, the relationships between voles and foxes were not fully consistent with the predation hypothesis. The direct numerical response of foxes should tend to stabilize this predator—prey community. It is suggested, however, that responses showed by vole-eating predators in temperate latitudes may sometimes affect their alternative prey, including animals with unfavourable conservation status.  相似文献   

6.
As in several Central European areas, in the Bohemian Forest Ecosystem (Germany and the Czech Republic), fenced feeding enclosures are used for the winter management of red deer (Cervus elaphus), which is an important component of the Eurasian lynx’s (Lynx lynx) winter diet. Using GPS telemetry data, we tested whether (1) lynx hunted red deer mainly selecting for high prey densities and environmental characteristics like a good level of habitat heterogeneity, independently of the enclosures’ presence; (2) enclosures attracted lynx and (3) positively influenced their predation on red deer, being predictable and abundant prey sources throughout the winter; or (4) extremely high deer densities inside the enclosures rather negatively influenced lynx predation on this species. We first compared lynx space usage and predation on red deer inside and outside the enclosures. Then, we investigated the effects of the environment, prey densities and the enclosure distance for the area outside of enclosures. Prey densities positively influenced lynx space usage, whilst the probability of predation on red deer was highest at medium to low red deer densities. Habitat heterogeneity and terrain ruggedness influenced both lynx space usage and probability of predation on red deer. Regarding the effect of enclosures, the ratio “area used during night vs. daytime” was larger by a factor of 2 inside compared to outside enclosures, and the probability of predation on red deer was three times higher inside rather than outside of enclosures; however, these differences were not statistically significant, suggesting that the influence of the enclosures is not very pronounced.  相似文献   

7.
Animals can adapt their activity patterns throughout the circadian cycle. Prey may use moonlight as a predation risk cue and allocate their activity to lower risk periods. Here, we assessed moon transit influence on the activity allocation of nocturnal mammalian prey, in the presence of a predator (pumas, Puma concolor), during different moon phases, through camera trapping in Central Amazon. Thirty camera traps were installed 2 km apart from each other in each of our three study sites. Prey record distributions were assessed across the moon cycle, and their daily activity patterns were described in each moon phase. The record distributions of pacas (Cuniculus paca) (N = 262) and armadillos (Dasypus sp.) (N = 244) were concentrated in darker nights, contrasting with red brocket deer (Mazama americana) (N = 123) and pumas (N = 31), whose records were evenly distributed through the moon cycle. Yet, every prey was found to avoid the brighter times of the night regardless of the moon phase. These findings suggest prey can shift the temporal distribution of their activities under different moon phases when predators are present, perhaps in response to predation risk variations.  相似文献   

8.
Predator‐prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator‐prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting‐mediated predator facilitation in a hunter‐predator‐prey system. We found that hunter avoidance by roe deer (Capreolus capreolus) exposed them to increase predation risk by Eurasian lynx (Lynx lynx). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.  相似文献   

9.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.  相似文献   

10.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

11.
Human-caused habitat change has been implicated in current woodland caribou (Rangifer tarandus caribou) population declines across North America. Increased early seral habitat associated with industrial footprint can result in an increase in ungulate densities and subsequently those of their predator, wolves (Canis lupus). Higher wolf densities can result in increased encounters between wolves and caribou and consequently higher caribou mortality. We contrasted changes in moose (Alces alces) and deer (Odocoileus spp.) densities and assessed their effects on wolf–caribou dynamics in northeastern Alberta, Canada, pre (1994–1997) versus post (2005–2009) major industrial expansion in the region. Observable white-tailed deer (O. virginianus) increased 17.5-fold but moose remained unchanged. Wolf numbers also increased from approximately 6–11.5/1,000 km2. Coincident with these changes, spatial overlap between wolf pack territories and caribou range was high relative to the mid-1990s. The high number of wolf locations in caribou range suggests that forays were not merely exploratory, but rather represented hunting forays and denning locations. Scat analysis indicated that wolf consumption of moose declined substantively during this time period, whereas use of deer increased markedly and deer replaced moose as the primary prey of wolves. Caribou increased 10-fold in the diet of wolves and caribou population trends in the region changed from stable to declining. Wolf use of beaver (Castor canadensis) increased since the mid-1990s. We suggest that recent declines in woodland caribou populations in the southerly extent of their range have occurred because high deer densities resulted in a numeric response by wolves and consequently higher incidental predation on caribou. Our results indicate that management actions to conserve caribou must now include deer in primary prey and wolf reduction programs. © 2010 The Wildlife Society  相似文献   

12.
Many animals assess their risk of predation by listening to and evaluating predators' vocalizations. We reviewed the literature to draw generalizations about predator discrimination abilities, the retention of these abilities over evolutionary time, and the potential underlying proximate mechanisms responsible for discrimination. Broadly, we found that some prey possess an ability to respond to a predator after having been evolutionarily isolated from a specific predator (i.e., predators are allopatric) and that some prey are predisposed to respond to certain types of predators that they coevolved with but without having ecological experience. However, these types of studies are lacking, and relatively, few studies have examined predator discrimination abilities in ungulates. To begin addressing these knowledge gaps, we performed field experiments on Mule deer (Odocoileus hemionus) in which we investigated the ability of deer to discriminate among familiar predators [coyotes (Canis latrans) and mountain lions (Puma concolor)] and an evolutionary relevant predator with which deer have had no recent exposure [locally extinct wolves (Canis lupus)]. We found that Mule deer respond to and discriminate among predators based on predator vocalizations and have retained an ability to respond to wolves that have been extinct from the study area since the early 20th century. Previous playback studies have shown that responses vary among human‐habituated and non‐habituated populations and differ according to human proximity. Deer greater than 0.5 km from human residences allocated more time to heightened responses both before and after stimulus playback. Our findings may help predict how prey–predator interactions may change as a result of the recovering wolf population with a basis in ecological and evolutionary experience in predator discrimination and desensitization.  相似文献   

13.
Natural controls on the distribution, abundance, or growth rates of exotic species are a desirable mode of intervention because of lower costs compared to anthropogenic controls and greater social acceptance. In the Great Basin, cougars (Puma concolor) are the most widely distributed carnivore capable of killing large ungulate prey. Populations of feral horses (Equus ferus) are widely distributed throughout the Great Basin and can grow at rates up to 20%/year. Although cougars exhibit distributional overlap with horses, it has been assumed that predation is minimal because of differences in habitat use and body-size limitations. To evaluate this hypothesis, we monitored the diets of 21 global positioning system (GPS)-collared cougars in the western Great Basin (5 males, 8 females) and eastern Sierra Nevada (2 males, 6 females) from 2009–2012. We investigated 1,310 potential kill sites and located prey remains of 820 predation events. We compared prey composition and kill rates of cougars inhabiting the Sierra Nevada and Great Basin, and among male and female cougars across seasons. We used generalized linear mixed models (GLMMs) to examine the effects of prey availability and habitat characteristics on the probability of predation on horses by cougars. Mule deer (Odocoileus hemionus) comprised 91% of prey items killed on the Sierra Nevada reference site but only comprised 29% of prey items in the Great Basin study area. Average annual kill rates for deer differed between the Sierra Nevada ( = 0.85 deer/week, range = 0.44–1.3) and Great Basin ( = 0.21 deer/week, range = 0.00–0.43). Diets of cougars in the Great Basin were composed predominantly of horses (59.6%, n = 460 prey items; 13 individuals). Ten cougars regularly consumed horses, and horses were the most abundant prey in the diet of 8 additional individuals in the Great Basin. Cougars on average killed 0.38 horses/week in the Great Basin (range=0.00–0.94 horses/week). Differences in predation on horses between the sexes of cougars were striking; Great Basin females incorporated more horses across all age classes year-round, whereas male cougars tended to exploit neonatal young during spring and summer before switching to deer during winter. Within GLMM models, the probability of predation on horses compared to other prey species increased with elevation, horse density, and decreasing density of mule deer on the landscape, and was more likely to occur in sagebrush (Artemesia spp.) than in pinyon (Pinus monophylla)–juniper (Juniperus osteosperma) forests. Behavior of individual cougars accounted for more than a third of the variation explained by our top models predicting predation on horses in the Great Basin. At landscape scales, cougar predation is unlikely to limit the growth of feral horse populations. In the Great Basin ecosystem, however, cougars of both sexes successfully preyed on horses of all age classes. Moreover, some reproductive, female cougars were almost entirely dependent on feral horses year-round. Taken together, our data suggest that cougars may be an effective predator of feral horses, and that some of our previous assumptions about this relationship should be reevaluated and integrated into management and planning. © 2021 The Wildlife Society.  相似文献   

14.
There has long been interest in the influence of predators on prey populations, although most predator–prey studies have focused on prey species that are targets of directed predator searching. Conversely, few have addressed depredation that occurs after incidental encounters with predators. We tested two predictions stemming from the hypothesis that nest predation on two sympatric freshwater turtle species whose nests are differentially prone to opportunistic detection—painted turtles (Chrysemys picta) and snapping turtles (Chelydra serpentina)—is incidental: (1) predation rates should be density independent, and (2) individual predators should not alter their foraging behavior after encountering nests. After monitoring nest survival and predator behavior following nest depredation over 2 years, we confirmed that predation by raccoons (Procyon lotor), the primary nest predators in our study area, matched both predictions. Furthermore, cryptic C. picta nests were victimized with lower frequency than more detectable C. serpentina nests, and nests of both species were more vulnerable in human-modified areas where opportunistic nest discovery is facilitated. Despite apparently being incidental, predation on nests of both species was intensive (57% for painted turtles, 84% for snapping turtles), and most depredations occurred within 1 day of nest establishment. By implication, predation need not be directed to affect prey demography, and factors influencing prey crypsis are drivers of the impact of incidental predation on prey. Our results also imply that efforts to conserve imperiled turtle populations in human-modified landscapes should include restoration of undisturbed conditions that are less likely to expose nests to incidental predators.  相似文献   

15.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

16.
Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs.  相似文献   

17.
Theoretical and empirical research suggests that carnivore distributions are largely determined by prey availability. Availability depends not only on prey density but also on prey accessibility which is affected, in part, by the configuration of landscape attributes that make prey vulnerable to predation. Exactly how spatial variation in these processes shape patterns of carnivore habitat use at the home range scale remains poorly understood. We examined the influence of prey density (negative binomial resource selection function) and vulnerability (kill site resource selection function), mapped separately for each of three species of primary prey, on habitat use patterns within the home range for Amur tigers Panthera tigris altaica in Far East Russia over 20 winters. We developed spatially‐explicit mixed linear regression models to assess these patterns and found that models with parameters for specific primary prey were more robust than models with composite parameters for all primary prey species. This emphasizes the importance of evaluating predation dynamics at a species‐specific level. We also found that Amur tigers used habitat within the home range where red deer Cervus elaphus and wild boar Sus scrofa were dense. These two species were clearly preferred by tigers accounting for 72% (201 of the 278) of the tiger kills detected. The effect of red deer density however, was modulated by the vulnerability of red deer in the landscape. Amur tigers tended to establish their home ranges on habitat where red deer were most vulnerable to predation, but would use habitat where red deer were dense in the peripheral regions of their home ranges. This suggests that tigers may utilize two separate strategies for acquiring prey. As the configuration of resource patches within the home range influences carnivore survival and reproduction, our analysis has implications for tiger conservation that extend beyond our improved understanding of tiger‐prey ecology.  相似文献   

18.
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non‐consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red‐tailed Hawk (Buteo jamaicensis) and Northern Harrier (Circus cyaneus), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite (Colinus virginianus). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation‐specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine‐scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.  相似文献   

19.
20.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号