首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) plants were regenerated after cocultivation of leaf explants withAgrobacterium tumefaciens strain LBA4404 harboring a plasmid that contained the coat protein (CP) gene of cucumber mosaic virus (CMV-As). PCR and Southern blot analyses revealed that the CMV CP gene was successfully introduced into the genomic DNA of the transgenic tobacco plants. Transgenic plants (CP+) expressing CP were obtained and used for screening the virus resistance. They could be categorized into three types after inoculation with the virus: virus-resistant, delay of symptom development, and susceptible type. Most of the CP+ transgenic tobacco plants failed to develop symptoms or showed systemic symptom development delayed for 5 to 42 days as compared to those of nontransgenic control plants after challenged with the same virus. However, some CP+ transgenic plants were highly susceptible after inoculation with the virus. Our results suggest that the CP-mediated viral resistance is readily applicable to CMV disease in other crops.  相似文献   

2.
3.
应用RNAi技术培育抗TMV病毒转基因烟草   总被引:5,自引:0,他引:5  
利用烟草花叶病毒(TMV)外壳蛋白基因构建RNAi干涉载体, 通过叶盘法转化至烟草K326 和龙江911两个栽培品种。对转基因株系的荧光定量PCR分析表明, 不同转基因株系的病毒RNA靶序列都得到一定程度的降解, 抗病性鉴定结果证实, 转基因K326和龙江911两个栽培品种的转基因材料分别有83%和90%转基因株系对TMV呈现免疫级抗性。  相似文献   

4.
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed.  相似文献   

5.
Cymbidium mosaic virus (CyMV) is the most prevalent virus infecting orchids. Here, we report the isolation of partial cDNA clones encoding the genomic RNA of CyMV. Like most of the polyadenylated monopartite positive-strand RNA viruses, the open reading frame (ORF) coding for the viral coat protein (CP) is located at the 3 end. The ORF predicts a polypeptide chain of 220 amino acids with a molecular weight of 23 600. Sequence comparison of this ORF to the CP sequences of potato virus X(PVX) and white clover mosaic virus (WCIMV) revealed a strong amino acid homology in the mid-portion of the CP, but the overall homology was low. The CyMV CP gene was placed downstream of a cauliflower mosaic virus 35S promoter and the chimaeric gene was transferred into Nicotiana benthamiana. Transgenic plants expressing the CyMV CP were protected against CyMV infection.  相似文献   

6.
7.
A bacterial rnc gene coding for a double-stranded RNA-dependent RNase III endoribonuclease and a mutant, rnc70, were expressed in tobacco plants. The RNase III protein produced in the transgenic plants was the same size as the bacterial protein. Expression of the wild-type gene could cause stunting in some plant lines, but not in others. Expression of the mutant protein did not affect normal growth and development of the transgenic plants. Transgenic plants of the R1 and R2 generations, expressing the wild type, as well as a mutant protein, were resistant to infection by three disparate RNA plant viruses with a divided genome but not against two viruses with a single-stranded RNA genome. Introduction of the rnc gene in crop plants may provide resistance to economically important virus diseases.  相似文献   

8.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

9.
Plants tolerate heavy metals through sequestration with cysteine-rich peptides, phytochelatins. In this reaction, the rate limiting step is considered to be the supply of cysteine, which is synthesized by cysteine synthase (CS, EC 4.2.99.8) from hydrogen sulfide andO-acetylserine. In this study, we transformed tobacco (Nicotiana tabacum) plants withRCS1, a cytosolic cysteine synthase gene of rice (Oryza sativa), and examined their sensitivity to cadmium. The transgenic plants had up to 3-fold higher activity of cysteine synthase than wild-type plants. Upon exposure to cadmium, they exhibited obvious tolerance with much greater growth than wild-type plants. The level of phytochelatins in shoots was higher in transgenic than in wild-type plants after cadmium treatment, suggesting that cadmium was actively trapped by phytochelatins. However, the cadmium concentration per g fresh weight of whole transgenic plants was 20 percnt; lower than that of wild-type plants, suggesting cadmium to be either actively excreted or diluted by fast growth. Genetic analysis of progenies clearly showed segregation of cadmium tolerance, indicating that the trait resulted from the introduced gene. These results suggest that introduction of a cysteine synthase gene into tobacco plants resulted not only in high level production of sulfur-containing compounds that detoxify cadmium, but also in active elimination of cadmium toxicity from plant bodies.  相似文献   

10.
Vitamin C (l-ascorbate) is important for antioxidative and metabolic functions in both plants and humans. Ascorbate itself is oxidized to dehydroascorbate during the process of antioxidation, and dehydroascorbate reductase (DHAR, EC 1.8.5.1) re-reduces the oxidized ascorbate. Therefore, this enzyme is assumed to be critical for ascorbate recycling. Here we show that the expression of rice DHAR in transgenic Arabidopsis thaliana enhanced resistance to salt stress. Salt tolerance was remarkably improved despite slight increases in DHAR activity and total ascorbate. This study provides direct evidence for the importance of DHAR in salt tolerance.  相似文献   

11.
The expression of viral coat protein (CP) in transgenic plants has been shown to be very effective in virus plant protection. However, the introduction of CP genes into plants presents the potential risk of the encapsidation of a superinfecting viral genome in the transgenic protein, an event which could change the epidemiology of the disease. To detect the potential heterologous encapsidation of the cucumber mosaic virus (CMV) genome by alfalfa mosaic virus (AIMV) CP expressed in transgenic tobacco plants, a system of immunocapture (IC) and amplification by polymerase chain reaction (PCR) was optimized. This provided high sensitivity and reliable selection of the heterologously encapsidated CMV genome in the presence of natural CMV particles. As little as 2 pg of virus could be detected by immunocapture/polymerase chain reaction (IC/PCR) technique. Evidence for heterologous encapsidation of the CMV genome was found in 11 of the 33 transgenic plants tested two weeks after CMV inoculation. This demonstrates a significant rate of heterologous encapsidation events between two unrelated viruses in transgenic plants. Since CP is involved in the interactions of the virus particle with its vector, the release in the field of such transgenic plants could alter the transmission properties of some important viruses.  相似文献   

12.
Cassin, the new gene of ribosome-inactivating protein (RIP) isolated from Cassia occidentalis, was inserted into expression vector pBI121 to produce plant expression vector pBI121-cassin (Figs.1, 2). pBI121-cassin was introduced into tobacco cultivar 'K326' by the Agrobacteriurm tumefaciens transformation method and more than 100 independent transformants were obtained. Southern blot hybridization analysis showed that a single gene locus was inserted into the chromosome of the transgenic tobacco lines (Fig.5) and PCR analysis of segregation population of progeny indicated that the inheritance of transgene was dominant in transgenic lines (Fig.4, Table 1). Results of RT-PCR and Northern blot hybridization analysis showed that transgene could be transcribed correctly (Figs.5, 6) . Three self-pollination lines of transgenic T(1) and T(2) were challenged with TMV at different concentration titers by mechanical inoculation. The transgenic lines exhibited different levels of resistance to TMV with the nontransgenic plants. After both titers of TMV concentration were inoculated, transgenic lines were considered as the highly resistant type with a delay of 4-13 d in development of symptoms and 10%-25% of test plants were infected, while nontransgenic control plants were susceptible typical symptoms on the newly emerged leaves (Table 2). One T(2) line, T(2)-8-2-1, was regarded as an immune type because it did not show any symptoms during 70 d and all plants were shown to be virus free by ELISA tests.  相似文献   

13.
The differing responses of a wide range of tobacco mosaic virus (TMV) isolates to various genes controlling resistance in tomato were not correlated with the amino acid composition of their coat proteins. Nor were they necessarily linked with ability to cause necrotic local lesions in White Burley tobacco, which is usually associated with the presence of methionine in the coat protein.  相似文献   

14.
Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.  相似文献   

15.
In many plant RNA viruses, Domains 1, 2 and 3 are conserved in replicase proteins. In order to examine the interference of viral replication by the Domain 1 sequence, we generated transgenic plants transformed with DNA corresponding to the Domain 1 sequence of the TMV 126 kDa protein. This DNA sequence includes the TMV RNA from nucleotides 1 to 2,149, which comprises both the 5'-untranslated and methyl transferase region. The transgenic plants obtained showed complete resistance to TMV infection. The presence of the Domain 1 sequence in the plants completely prevented local necrosis in Nicotiana tabacum cv. Xanthi nc, and any systemic development of symptoms in Nicotiana tabacum Xanthi upon TMV inoculation. Most transgenic plants sustained the conferred resistance even under TMV inoculum concentrations up to as high as 1,000 microg/ml. To detect any accumulation of TMV coat protein or viral RNA in infected transgenic plants, immunochemical tests and Northern blot analyses were carried out. Neither viral RNA or coat protein was detectable in the systemic leaves of the completely resistant transgenic plants, whereas they were accumulated in large quantities in all of the control plants. Because of the conservation of Domain 1 in many plant RNA viruses, the acquisition of resistance to virus infection using the Domain 1 sequence appears to be a very effective strategy for breeding of viral resistant plants.  相似文献   

16.
Summary Cross protection of plant viruses is a phenomenon in which plants infected with one strain of a virus are protected from the effects of superinfection by other related strains. Recently, we have succeeded in the introduction and expression of a cDNA copy of the tobacco mosaic virus (TMV) genomic RNA in transgenic tobacco plants. Using this system, we introduced a cDNA copy of a mild strain of TMV into tobacco plants. The transgenic plants did not develop any severe symptoms upon inoculation with a virulent TMV strain, indicating that these transgenic plants were cross protected against TMV infection. The system described here can be a useful model system to study the mechanism(s) of cross protection.  相似文献   

17.
The kinetics of thermal aggregation of coat protein (CP) of tobacco mosaic virus (TMV) have been studied at 42 and 52°C in a wide range of protein concentrations, [P]0. The kinetics of aggregation were followed by monitoring the increase in the apparent absorbance (A) at 320 nm. At 52°C the kinetic curves may be approximated by the exponential law in the range of TMV CP concentrations from 0.02 to 0.30 mg/ml, the first order rate constant being linearly proportional to [P]0 (50 mM phosphate buffer, pH 8.0). The analogous picture was observed at 42°C in the range of TMV CP concentrations from 0.01 to 0.04 mg/ml (100 mM phosphate buffer, pH 8.0). At higher TMV CP concentrations the time of half-conversion approaches a limiting value with increasing [P]0 and at sufficiently high protein concentrations the kinetic curves fall on a common curve in the coordinates {A/A lim; t} (t is time and A lim is the limiting value of A at t ). According to a mechanism of aggregation of TMV CP proposed by the authors at rather low protein concentrations the rate of aggregation is limited by the stage of growth of aggregate, which proceeds as a reaction of the pseudo-first order, whereas at rather high protein concentrations the rate-limiting stage is the stage of protein molecule unfolding.  相似文献   

18.
The coat protein (CP) of tobacco streak virus (TSV) can substitute for the early function of alfalfa mosaic virus (AIMV) CP in genome activation. Replacement of the CP gene in AIMV RNA 3 with the TSV CP gene and analysis of the replication of the chimeric RNA indicated that the TSV CP could not substitute for the function of AIMV CP in asymmetric plus-strand RNA accumulation but could encapsidate the chimeric RNA and permitted a low level of cell-to-cell transport.  相似文献   

19.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号