首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Biosynthesis and processing of the mannose receptor in human macrophages   总被引:4,自引:0,他引:4  
The biosynthesis and processing of the human mannose receptor has been studied in monocyte-derived macrophages. Adherent cells were labeled for 60 min with Trans35S (a mixture of 35S-labeled methionine and cysteine), chased, and subjected to immunoprecipitation by antibody raised against the human placental receptor. The antibody immunoprecipitated a single protein of molecular mass 162 kDa; precipitation of the labeled receptor could be inhibited by placental receptor. The results presented demonstrate that the receptor is synthesized as a 154-kDa precursor which is processed to 162 kDa in 90 min. The precursor is a glycoprotein bearing endoglycosidase H-sensitive oligosaccharides; the 162-kDa form is endoglycosidase H-resistant but peptide:N-glycanase-sensitive. Desialylation of the mannose receptor with neuraminidase generates a protein which is recognized by peanut agglutinin, a lectin that specifically binds desialylated O-linked oligosaccharides. Thus, the human macrophage mannose receptor bears both N- and O-linked oligosaccharide chains. Newly synthesized mannose receptor exhibits a half-life of 33 h as determined by pulse-chase studies. This indicates that on the average, each molecule of receptor recycles between the cell surface and endosomes hundreds of times before degradation.  相似文献   

2.
Glycosylation and carbohydrate processing of ecto-5'-nucleotidase were studied in cultured human chorionic cells using metabolic labelling and immunoprecipitation with monoclonal antibodies. Tunicamycin blocks glycosylation altogether leading to a reduction in molecular mass of 9,500 Da. The same result is obtained by digesting the mature 72,000-Da protein with endoglycosidase F. Using various inhibitors of the carbohydrate-trimming reactions like deoxynojirimycin, deoxymannojirimycin and swainsonine smaller molecular mass reductions are observed and the oligosaccharide side chains are kept in a configuration sensitive to endoglycosidase H digestion. Digestion of mature 5'-nucleotidase with endoglycosidase H leads to a much smaller (2,000 Da) reduction in molecular mass. It is calculated that, in addition to the phosphatidylinositol-glycan anchor structure, ecto-5'-nucleotidase of human chorionic cells should carry 4 oligosaccharide side chains per subunit, 3 of which should be of the complex and one of the high mannose type. Interference with carbohydrate processing by various inhibitors does not seem to influence the distribution of ecto-5'-nucleotidase between the cell surface and intracellular membranes nor does it block the transfer of the enzyme to the phosphatidylinositol glycan anchor.  相似文献   

3.
Synthesis and processing of cellulase from ripening avocado fruit   总被引:7,自引:3,他引:4       下载免费PDF全文
The biosynthesis and processing of cellulase from ripening avocado fruit was studied. The mature protein is a glycoprotein, as judged by concanavalin A binding, with a molecular weight of 54,200. Upon complete deglycosylation by treatment with trifluoromethane sulfonic acid the mature protein has a molecular weight of 52,800 whereas the immunoprecipitated in vitro translation product has a molecular weight of 54,000. This result indicates that cellulase is synthesized as a large molecular weight precursor, which presumably possesses a short-lived signal peptide. A membrane-associated and heavily glycosylated form of the protein was also identified. This putative secretory precursor was enzymically active and the carbohydrate side chains were sensitive to endoglycosidase H cleavage. Results of partial endoglycosidase H digestion suggest that this precursor form of the mature glycoprotein possesses two high-mannose oligosaccharide side chains. The oligosaccharide chains of the mature protein were insensitive to endoglycosidase H cleavage, indicating that transport of the membrane-associated cellulase to the cell wall was accompanied by modification of the oligosaccharide side chains. The presence of a large pool of endoglycosidase H-sensitive membrane-associated cellulase (relative to an endoglycosidase H-insensitive form) suggest that transit of this protein through the Golgi is rapid relative to transit through the endoplasmic reticulum.  相似文献   

4.
The leukocyte integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) is a receptor for the extracellular matrix protein fibronectin and the endothelial adhesion protein VCAM-1. We have analyzed the biosynthesis and post-translational modifications of the two subunits of this receptor complex. The alpha 4 subunit was initially synthesized as a single-chain polypeptide that underwent the formation of complex endoglycosidase H-resistant oligosaccharide side chains and which could be proteolytically cleaved into two noncovalently associated fragments. The level and rate of alpha 4 subunit cleavage was dependent on the cell studied. The T cell tumor line HPB-ALL expressed both intact and fragmented alpha 4 on the cell surface. The interleukin-2-dependent natural killer line NK 3.3 and long term interleukin-2-dependent activated T lymphocytes cleaved the alpha 4 polypeptide earlier and more efficiently than did HPB-ALL cells and did not have detectable levels of intact alpha 4 on the cell surface. The proteolysis of alpha 4 was blocked by treating cells with either the lysosomotrophic amine NH4Cl or the carboxylic ionophore monensin. The presence of complex N-linked oligosaccharides did not seem to be necessary for alpha 4 cleavage or for binding of the alpha 4 beta 1 complex to a synthetic peptide corresponding to the binding site for this receptor on fibronectin.  相似文献   

5.
Myeloperoxidase, stored in azurophil granules of neutrophils, is synthesized in promyelocytes as a larger molecular weight precursor, which is processed to yield a transient Mr 82 000 intermediate and mature polypeptides with molecular weights of 62 000 and 12 000. We have tried to define subcellular sites for processing using metabolic labelling of the promyelocytic leukemia cell line HL-60 in combination with subcellular fractionation on a Percoll gradient. A reasonable separation was achieved between azurophil granules, Golgi elements and endoplasmic reticulum. The finding of almost exclusively fully processed myeloperoxidase in granules and a mixture of unprocessed and processed polypeptide in fractions enriched in Golgi elements suggests that processing occurred mainly in pregranular structures. Monensin, which exchanges protons for Na+, and the base chloroquine blocked processing probably by inhibition of transport through the Golgi apparatus. However, the lysosomotropic NH4+ cation did not inhibit processing or transport indicating that processing is not necessarily influenced by pH-dependent mechanisms. Results from digestion with endoglycosidase H, incubation with tunicamycin and metabolic labelling with [3H]mannose indicated that myeloperoxidase contained high mannose oligosaccharide side chains. Also [32P]phosphate incorporated into Mr 90 000 and Mr 62 000 myeloperoxidase was susceptible to endoglycosidase H indicating that oligosaccharide side chains are modified by phosphorylation as in lysosomal enzymes. Thus, even if myeloperoxidase contained mannose 6-phosphate residues, these may not necessarily be involved in directing transport to the azurophil granules.  相似文献   

6.
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.  相似文献   

7.
Intestinal brush border enzyme glycoproteins are transported to the microvillar membrane at different rates in the differentiated intestinal cell line Caco-2. This asynchronism is due to at least two rate-limiting events, a pre- and an intra-Golgi step (Stieger B., Matter, K., Baur, B., Bucher, K., H?chli, M., and Hauri, H.P. (1988) J. Cell Biol. 106, 1853-1861). A possible cause for the asynchronous protein transport might be differential trimming of N-linked oligosaccharide side chains. The effects of two trimming inhibitors on the intracellular transport of sucrase-isomaltase, a slowly migrating hydrolase, and dipeptidylpeptidase IV, a rapidly migrating hydrolase, are described. 1-Deoxymannojirimycin, an inhibitor of Golgi alpha-mannosidase I, had no influence on the rate of appearance of these hydrolases in the brush border membrane as assessed by subcellular fractionation. In the presence of N-methyl-1-deoxynojirimycin, an inhibitor of glucosidase I, 30-40% of the newly synthesized molecules appeared at the cell surface, and half-time for appearance of this pool was identical to that found in control cells. The reduced maximal transport to the cell surface observed with N-methyl-1-deoxynojirimycin may suggest that proper glycosylation is necessary for an efficient transport from the Golgi apparatus to the microvillar membrane. Inhibition of glucosidase I does not prevent the acquisition of endoglycosidase H resistance. Furthermore, evidence is presented that the processing in the presence of N-methyl-1-deoxynojirimycin leads to glycosylated endoglycosidase H-resistant glycoproteins.  相似文献   

8.
The role of trimming and processing of N-linked oligosaccharides on the cell surface expression of the melanoma vitronectin receptor, a member of the integrin family of cell adhesion receptors, was examined by using specific glucosidase and mannosidase inhibitors. Inhibition of glucosidases I and II by castanospermine or N-methyldeoxynojirimycin delayed the vitronectin receptor alpha/beta chain heterodimer assembly and alpha chain cleavage and resulted in a decrease in the level of expression cell surface receptor. Conversely, the vitronectin receptor synthesized in the presence of the mannosidase I and II inhibitors, 1-deoxymannojirimycin and swainsonine, was transported normally to the cell surface with its alpha chain N-linked oligosaccharides in an endoglycosidase H-sensitive form. In the presence of swainsonine, time course studies of the cell surface replacement of control, endoglycosidase H-resistant receptor with an endoglycosidase H-sensitive form demonstrated a vitronectin receptor half-life of approximately 15-16 h. These studies provide evidence that the rates of assembly, proteolytic cleavage, and cell surface expression of the melanoma vitronectin receptor are dependent on the initial trimming of glucosyl residues from the alpha chain N-linked oligosaccharides.  相似文献   

9.
The low density lipoprotein receptor-related protein (LRP) is a cell surface glycoprotein that binds and transports plasma lipoproteins enriched in apolipoprotein E. It is synthesized in the endoplasmic reticulum as a transmembrane glycosylated precursor that migrates with an apparent molecular mass of about 600 kd on SDS-polyacrylamide gels. After it reaches the Golgi complex, the protein is cleaved to generate two subunits with apparent molecular masses of approximately 515 and 85 kd respectively. The larger NH2-terminal alpha-subunit lacks a membrane-spanning region. It remains attached to the membrane through noncovalent association with the smaller COOH-terminal beta-subunit. Proteolysis occurs at the sequence RHRR, which resembles the sequence RKRR at the proteolytic site in the receptors for insulin and insulin-like growth factor-1 (IGF-1), the only other cell surface receptors known to undergo proteolytic processing. Proteolysis of LRP occurs coincident with the conversion of the N-linked carbohydrates to the mature endoglycosidase H-resistant, neuraminidase-sensitive form. Proteolysis is prevented by brefeldin A, which blocks transport to the Golgi complex. These data raise the possibility that LRP and the receptors for insulin and IGF-1 are processed by a specific endoprotease that recognizes protein with extended basic sequences and resides in the trans-Golgi complex or in post-Golgi vesicles of the constitutive secretory pathway.  相似文献   

10.
The threonine analog beta-hydroxynorvaline (Hnv) is an inhibitor of asparagine-linked glycosylation. In the presence of the analog hepatocytes synthesized immunoreactive alpha 1-acid glycoprotein with 0-6 oligosaccharide chains. Pulse-chase experiments were conducted to compare the rates of secretion of alpha 1-acid glycoprotein from untreated, tunicamycin-treated, and Hnv-treated cells. Partially glycosylated (1-5 oligosaccharide chains) and unglycosylated (tunicamycin-inhibited) molecules exited the cells more slowly than native alpha 1-acid glycoprotein. In addition, secretion of fully glycosylated (6 oligosaccharide chains) alpha 1-acid glycoprotein was retarded in Hnv-treated cells when compared to controls. The slowest rate of secretion was exhibited by the unglycosylated form from Hnv-treated cells. These results suggest that Hnv-induced changes either in the extent of glycosylation or in the peptide sequence of alpha 1-acid glycoprotein can interfere with its transport through the cell. The major intracellular forms of alpha 1-acid glycoprotein from control and Hnv-treated cells were endoglycosidase H-sensitive and contained Man9-8 GlcNAc2 oligosaccharide structures. The oligosaccharide chains on the secreted molecules from control and Hnv-treated cells were entirely of the endoglycosidase H-resistant, complex type.  相似文献   

11.
The intracellular processing of the murine leukemia virus envelope glycoprotein precursor Pr85 to the mature products gp70 and p15e was analyzed in the mouse T-lymphoma cell line W7MG1. Kinetic (pulse-chase) analysis of synthesis and processing, coupled with endoglycosidase (endo H) and neuraminidase digestions revealed the existence of a novel high molecular weight processing intermediate, gp95, containing endo H-resistant terminally glycosylated oligosaccharide chains. In contrast to previously published conclusions, our data indicate that proteolytic cleavage of the envelope precursor occurs after the acquisition of endo H-resistant chains and terminal glycosylation and thus after the mannosidase II step. In the same W7MG1 cell line, the type and order of murine leukemia virus envelope protein processing events was identical to that for the mouse mammary tumor virus envelope protein. Interestingly, complete mouse mammary tumor virus envelope protein processing requires the addition of glucocorticoid hormone, whereas murine leukemia virus envelope protein processing occurs constitutively in these W7MG1 cells. We propose that all retroviral envelope proteins share a common processing pathway in which proteolytic processing is a late event that follows acquisition of endo H resistance and terminal glycosylation.  相似文献   

12.
Biosynthesis of glycosylated human lysozyme mutants.   总被引:9,自引:0,他引:9  
Complementary DNA encoding human lysozyme was subjected to oligonucleotide-directed mutagenesis. At one of three selected positions, amino acid residues 22, 68, or 118, the signal for N-linked glycosylation was created. The mutant DNAs were inserted into a eucaryotic vector and transfected into cultured hamster cells. The three mutant cDNAs directed synthesis of lysozyme mutants, which were named LI, LII, and LIII. The mutant lysozymes LI and LII comprised mixtures of glycosylated and nonglycosylated forms. The glycosylated and nonglycosylated forms of mutant LI were found to have an enzymatic activity similar to normal human milk lysozyme. The usage of the glycosylation sites in the mutants was similar in Chinese hamster ovary (CHO) and baby hamster kidney cells. Approximately two of every three molecules in mutant LI, approximately one of every eight molecules in mutant LII, and practically no molecules in mutant LIII became glycosylated. In CHO cells, the processing of the oligosaccharide side chains yielded several larger products than in baby hamster kidney cells. This size variability of glycosylated lysozyme from CHO cells may be explained by the presence of biantennary and triantennary endo-beta-N-acetylglucosaminidase H-resistant oligosaccharides with N-acetyllactosamine repeats of variable length and by the presence of hybrid oligosaccharides, as suggested by affinity to several lectins and sensitivity to endo-beta-galactosidase. In both cell types, the majority of the glycosylated forms were secreted and thus behaved similarly to nonglycosylated lysozyme. A small proportion of mutant LI lysozyme remained associated with the cells. The retained lysozyme was recruited predominantly from the molecules bearing high mannose oligosaccharides. These molecules were targeted to lysosomes, and their carbohydrate was trimmed to an endo-beta-N-acetylglucosaminidase H-resistant form. Owing to the small size of mutant LI lysozyme, minor changes in the size of its carbohydrate moiety result in detectable changes in the electrophoretic mobility of the whole glycoprotein. We suggest that this novel glycoprotein could be used as a reporter in studies on processing and segregation of glycoproteins.  相似文献   

13.
A V Le  D Doyle 《Biochemistry》1985,24(22):6238-6245
The H-2K and H-2D proteins encoded by the K and D region of the major histocompatibility complex of the mouse were isolated by immunoprecipitation with specific antisera and resolved by two-dimensional gel electrophoresis. Of these two polypeptides, the H-2Dk glycoproteins isolated from macrophages of C3H/HeHa mice exhibit distinct cell surface and cytoplasmic forms although they share a strong degree of homology in the polypeptide backbone. Structurally they differ in their oligosaccharide structures. The structure of the oligosaccharides on the intracellular forms is of the high mannose type while the same structures on the cell surface forms are of the complex type. In the absence of all three oligosaccharide side chains, the unglycosylated polypeptides are expressed on the cell surface. In contrast, polypeptides containing one, two, or all three oligosaccharide side chains of the high mannose type are not transported to the cell surface. Cell surface expression of these glycoproteins requires processing of the oligosaccharide side chains from the high mannose form to the complex type. However, not all oligosaccharide antennae have to be terminally modified since H-2Dk glycoproteins synthesized in the presence of oligosaccharide-processing enzyme inhibitors such as swainsonine or monensin are also transported to the cell surface. H-2Dk glycoproteins containing oligosaccharide structures of the complex type but lacking terminal sialic acids are found on the cell surface, suggesting that sialylation is not required for transport. These results indicate that the oligosaccharide structures of the H-2Dk glycoproteins act to influence their cellular distribution.  相似文献   

14.
To explore the utility of the baculovirus/insect-cell system for the expression of a soluble secreted human insulin-receptor (hIR) extracellular ligand-binding domain, we have engineered a recombinant virus encoding an hIR deletion mutant which is truncated eight residues from the beginning of the predicted transmembrane domain (i.e. 921 residues). Within 24 h after infection of Sf9 cells with virus, insulin-binding activity begins to accumulate in the culture medium, and reaches a maximum between 48 and 72 h. The intracellular transit and processing of this secreted receptor, designated 'AchIR01', is quite slow. After 24 h in pulse-chase experiments approximately 50% of the metabolically labelled protein is still inside the cell. This protein accumulates as a non-cleaved hIR precursor which is glycosylated, but the carbohydrate is entirely endoglycosidase H (endoH)-sensitive (i.e. high mannose). Approximately one-half of the receptor in the culture medium (i.e. approximately 25% of the total) is in the form of non-cleaved precursor, and about one half of its carbohydrate chains are now endoH-resistant. The remainder of the protein is proteolytically processed hIR (alpha-plus truncated beta-subunits). None of these hIR species exhibit O-linked carbohydrate. Only the processed form of the receptor in the medium binds insulin. This insulin-binding protein is secreted as a dimer (alpha beta)2, and binds insulin with an affinity which is comparable with that of both the wild-type hIR as well as the secreted form of the hIR expressed in mammalian cells. Despite the rather inefficient processing and altered glycosylation of the AchIR01 protein in insect cells, this high-affinity insulin-binding protein accumulates in the medium at levels (mg/litre) of about 100 times that achieved in a mammalian-cell system.  相似文献   

15.
Recently, several investigators have explored the possibility of targeting ricin to designated cell types in animals by its linkage to specific antibodies. There is evidence, however, that the mannose-containing oligosaccharide chains on ricin are recognised by reticuloendothelial cells in the liver and spleen and so cause the immunotoxins to be removed rapidly from the blood stream. In the present study we analysed the carbohydrate composition of ricin and examined enzymic methods for removing the carbohydrate. The carbohydrate analysis ricin A-chain revealed the presence of one residue of xylose and one of fucose in addition to mannose and N-acetylglucosamine which had been detected previously. The B-chain contained only mannose and N-acetylglycosamine. Ricin A-chain is heterogeneous containing two components of molecular weight 30 000 and 32 000. Strong evidence was found that the heavier form of the A-chain contains an extra carbohydrate unit which is heterogeneous with respect to concanavalin A binding and sensitivity to endoglycosidase H. The lower molecular weight form of A-chain did not bind concanavalin A and was insusceptible to endoglycosidases. Only one of the two high mannose oligosaccharide units on the isolated B-chain could be removed by endoglycosidases H or F, whereas both were removable after denaturation of the polypeptide by SDS. Both the isolated A- and B-chains were sensitive to alpha-mannosidase. Intact ricin was resistant to endoglycosidase treatment and was only slightly sensitive to alpha-mannosidase. The addition of SDS allowed endoglycosidase H to remove both of the B-chain oligosaccharides from intact ricin and increased the toxin's sensitivity to alpha-mannosidase. In conclusion, extensive enzymic deglycosylation of ricin may only be possible if the A- and B-chains are first separated, treated with enzymes and then recombined to form the toxin.  相似文献   

16.
In nontransformed DHFR/G-8 cells (NIH 3T3 cells transfected with normal rat neu gene), the normal neu gene product was initially synthesized as a 170-kDa protein bearing endoglycosidase H-sensitive oligosaccharide chains and was then processed to a 175-kDa mature form with endoglycosidase H-resistant, endoglycosidase F-sensitive oligosaccharide chains. Most of this 175-kDa mature form appeared on the cell surface 2 h following synthesis and showed a half-life of approximately 3 h. In the presence of a growth factor(s) partially purified from bovine kidney, the half-life of this 175-kDa normal neu gene product was shortened to less than 30 min. In B104-1-1 cells (NIH 3T3 cells transfected with neu gene activated oncogenically by a point mutation that changes a valine residue to a glutamic acid residue in the putative transmembrane region), the oncogenically activated neu gene product was also synthesized as a 170-kDa precursor with endoglycosidase H-sensitive oligosaccharide chains. However, this 170-kDa precursor diminished very fast and was only partially processed to a 185-kDa mature form which exhibited a half-life of less than 30 min. The 185-kDa activated neu gene product possessed an unidentified post-translational modification in addition to N-linked oligosaccharide chains. Both the precursor and mature forms of the mutationally activated neu gene product showed increased tyrosine-specific phosphorylation as compared with those of their normal counterparts in DHFR/G-8 cells. The mutationally activated neu gene product in B104-1-1 cells shared several features which have been reported previously for the ligand-activated platelet-derived growth factor receptor in v-sis- or c-sis-transformed cells. These properties include: 1) accelerated turnover of the precursor and mature forms compared with the rates of turnover of its normal counterparts, 2) insensitivity of this rapid turnover to lysosomotropic amines, and 3) increased in vivo tyrosine-specific phosphorylation of both the precursor and mature forms. These findings suggest that the mutationally activated neu gene product may transform the cells by mimicking ligand-induced activation.  相似文献   

17.
The biosynthesis of the EGF receptor was examined in the epidermoid carcinoma cell line A431 and five novel cell lines from human squamous cell carcinomas possessing high numbers of EGF receptors. Newly synthesized EGF receptors were visualized by labeling with [35S]methionine and immunoprecipitation with a monoclonal anti-EGF receptor antibody. In addition, the processing of the EGF receptor and its intracellular transport was analyzed by distinguishing cell surface receptors from intracellular receptors and by treating cells with inhibitors such as tunicamycin, monensin and brefeldin A. These analyses revealed that in all the tumor cell lines the EGF receptor is synthesized as a glycosylated protein of Mr 160,000 which is converted to the receptor of Mr 170,000 through posttranslational glycosylation. The receptors of Mr 160,000 and 170,000 appeared to possess high mannose type oligosaccharide chains because endoglycosidase H treatment reduced their molecular weights by approximately 30,000. A431 was the only tumor cell line studied that secreted the truncated EGF receptor of Mr 110,000. In A431 cells, the truncated EGF receptor was generated from a protein of Mr 60,000 through tunicamycin- and monensin-sensitive glycosylation. A431 cells treated with monensin secreted the truncated receptor as a Mr 95,000 form.  相似文献   

18.
Biosynthesis of von Willebrand protein by human umbilical vein endothelial cells involved distinct processing steps marked by the presence of several intermediate molecular species. Examination of endoglycosidase H sensitivity of these intracellular intermediates indicated that the processing steps occurred in at least two separate cellular compartments. In the pre-Golgi apparatus (most probably the endoplasmic reticulum), the high mannose carbohydrates were added onto the precursor monomer chains and the 260,000-mol-wt monomers dimerized by interchain disulfide bond formation. The other processing steps have been localized to the Golgi apparatus and later compartments (e.g., Weibel-Palade bodies). High mannose carbohydrate was converted to the complex type, leading to the appearance of a larger precursor subunit of 275,000 mol wt. The 275,000-mol-wt species was not formed if carbohydrate processing was inhibited by the ionophore monensin. From the large pool of dimers of precursor subunits, the high molecular weight multimers were built. These dimer molecules appeared to have free sulfhydryls which might have been involved in the interdimer disulfide bond formation. Simultaneously with multimerization, the precursor subunits were cleaved to the 220,000-mol-wt form. The cleavage of the pro-sequence was not likely to be an absolute requirement for von Willebrand protein multimerization or secretion, as the 275,000-mol-wt precursor subunit was present in secreted high molecular weight multimers of the protein.  相似文献   

19.
The adenosine deaminase-binding protein has previously been localized to the cell surface of human fibroblasts (Andy, R. J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925). In this study we examine the biosynthesis of binding protein in human fibroblasts, human hepatoma HepG2 cells, and a human kidney tumor cell line. Binding protein immunoprecipitated from radioiodinated detergent-extracted fibroblast membranes has a molecular weight of 120,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An additional band of Mr 100,000 is also present which we believe is a result of proteolysis of the 120,000 band. Purified soluble kidney binding protein has an Mr of 112,000. Binding protein from fibroblasts pulse-labeled with [35S]methionine for 15 min migrates as a 110-kDa band on sodium dodecyl sulfate-polyacrylamide gels. Within 30-60 min of chase, the intensity of the 110-kDa band is diminished, and a 120-kDa band has appeared. Binding protein reaches the cell surface of fibroblasts within 30-60 min of chase. The same results are obtained with the other cell lines studied. Thus, binding protein is initially synthesized as a precursor of 110 kDa which chases into a 120-kDa mature form. The shift of 10 kDa is probably due to processing of its oligosaccharide chains since soluble kidney-binding protein contains 7-9 complex N-linked chains. Upon endoglycosidase H treatment, the 110,000 precursor shifts to a Mr of 89,000 while the 120,000 mature band shifts to 115,000, consistent with the presence of 7-9 high mannose chains on the precursor and 1-2 high mannose chains on the mature form. These results and the presence of complex N-linked chains on binding protein were confirmed by lectin affinity chromatography of glycopeptides derived from [2-3H]mannose-labeled binding protein. Analysis of [6-3H]glucosamine-labeled binding protein indicates the presence of 1 sialic acid residue per chain.  相似文献   

20.
We examined the biosynthetic processing and assembly of the platelet glycoprotein (GP) IIb-IIIa complex in [35S]methionine-labeled HEL cells, a human cell line with features of megakaryocytes. Both GPIIb and GPIIIa were synthesized as single-chain precursors to which high mannose N-linked oligosaccharides were added in the endoplasmic reticulum (ER). A 5-fold excess of the major IIb precursor, preIIb, was synthesized relative to GPIIIa. Two smaller proteins immunologically related to GPIIb were synthesized in smaller amounts. Assembly of the GPIIb and GPIIIa precursors required 4-6 h for completion. All GPIIIa molecules were eventually assembled; the excess GPIIb precursors were degraded without reaching the cell surface. Following assembly, preIIb-IIIa complexes were rapidly transported to the Golgi apparatus where preIIb underwent modification of high mannose chains into complex oligosaccharides and proteolytic cleavage to yield disulfide-linked heavy and light chains. Pretreating cells with the ionophore monensin blocked cleavage of preIIb but not its carbohydrate modification or its assembly with GPIIIa. These studies suggest that 1) assembly of the precursors of GPIIb and GPIIIa in the ER is a slow process requiring conformational maturation of one or both subunits, and 2) only heterodimers assembled in the ER are transported to the Golgi apparatus for additional processing and, ultimately, expression on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号