首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of replacing Asp-85 with glutamate in bacteriorhodopsin, as expressed in Halobacterium sp. GRB, were investigated. Similarly to the in vitro mutated and in Escherichia coli expressed protein, the chromophore was found to exist as a mixture of blue (absorption maximum 615 nm) and red (532 nm) forms, depending on the pH. However, we found two widely separated pKa values (about 5.4 and 10.4 without added salt), arguing for two blue and two red forms in separate equilibria. Both blue and red forms of the protein are in the two-dimensional crystalline state. A single pKa, such as in the E. coli expressed protein, was observed only after solubilization with detergent. The photocycle of the blue forms was determined at pH 4.0 with 610 nm photoexcitation, and that of the red forms at pH 10.5 and with 520 nm photoexcitation, in the time-range of 100 ns to 1 s. The blue forms produced no M, but a K- and an L-like intermediate, whose spectra and kinetics resembled those of blue wild-type bacteriorhodopsin below pH 3. The red forms produced a K-like intermediate, as well as M and N. Only the red forms transported protons. Specific perturbation of the neighborhood of the Schiff base by the replacement of Asp-85 with glutamate was suggested by (1) the shift and splitting of the pKa for what is presumably the protonation of residue 85, (2) a 36 nm blue-shift in the absorption of the all-trans red chromophore and a 25 nm red-shift of the 13-cis N chromophore, as compared to wild-type bacteriorhodopsin and its N intermediate, and (3) significant acceleration of the deprotonation of the Schiff base at pH 7, but not of its reprotonation and the following steps in the photocycle.  相似文献   

2.
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.  相似文献   

3.
According to earlier reports, residue 85 in the bacteriorhodopsin mutants D85E and Y185F deprotonates with two apparent pKa values. Additionally, in Y185F, Asp-85 becomes significantly more protonated during light adaptation. We provide a new explanation for these findings. It is based on the scheme that links the protonation state of residue 85 to the protonation state of residue 204 (S.P. Balashov, E.S. Imasheva, R. Govindjee, and T.G. Ebrey. 1996. Biophys. J. 70:473-481; H.T. Richter, L.S. Brown, R. Needleman, and J.K. Lanyi. 1996. Biochemistry. 35:4054-4062) and justified by the observation that the biphasic titration curves of D85E and Y185F are converted to monophasic when the E204Q residue change is introduced as a second mutation. Accordingly, the D85E and Y 185F mutations are not the cause of the biphasic titration, as that is a property of the wild-type protein. By perturbing the extracellular region of the protein, the mutations increase the pKa of residue 85. This increases the amplitude of the second titration component and makes the biphasic character of the curves more obvious. Likewise, a small rise in the pKa of Asp-85 when the retinal isomerizes from 13-cis, 15-syn to all-trans accounts for the changed titration behavior of Y185F after light adaptation. This mechanism simplifies and unites the interpretation of what had appeared to be complex and unrelated phenomena.  相似文献   

4.
By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of [zeta-(15)N]lys-, [12-(13)C]retinal-, and [14,15-(13)C]retinal-labeled D85N samples indicate a deprotonated, 13-cis,15-anti chromophore. On the other hand, at neutral pH, the NMR spectra of D85N show a mixture of protonated Schiff base species similar to that seen in the wild-type protein at low pH, and more complex than the two-state mixture of 13-cis,15-syn, and all-trans isomers found in the dark-adapted wild-type protein. These results lead to several conclusions. First, the reversible titration of order in the D85N chromophore indicates that electrostatic interactions have a major influence on events in the active site. More specifically, whereas a straight chromophore is preferred when the Schiff base and residue 85 are oppositely charged, a bent chromophore is found when both the Schiff base and residue 85 are electrically neutral, even in the dark. Thus a "bent" binding pocket is formed without photoisomerization of the chromophore. On the other hand, when photoisomerization from the straight all-trans,15-anti configuration to the bent 13-cis,15-anti does occur, reciprocal thermodynamic linkage dictates that neutralization of the SB and D85 (by proton transfer from the former to the latter) will result. Second, the similarity between the chromophore chemical shifts in D85N at alkaline pH and those found previously in the M(n) intermediate of the wild-type protein indicate that the latter has a thoroughly relaxed chromophore like the subsequent N intermediate. By comparison, indications of L-like distortion are found for the chromophore of the M(o) state. Thus, chromophore strain is released in the M(o)-->M(n) transition, probably coincident with, and perhaps instrumental to, the change in the connectivity of the Schiff base from the extracellular side of the membrane to the cytoplasmic side. Because the nitrogen chemical shifts of the Schiff base indicate interaction with a hydrogen-bond donor in both M states, it is possible that a water molecule travels with the Schiff base as it switches connectivity. If so, the protein is acting as an inward-driven hydroxyl pump (analogous to halorhodopsin) rather than an outward-driven proton pump. Third, the presence of a significant C [double bond] N syn component in D85N at neutral pH suggests that rapid deprotonation of D85 is necessary at the end of the wild-type photocycle to avoid the generation of nonfunctional C [double bond] N syn species.  相似文献   

5.
With the aim of preparing a light-insensitive bacteriorhodopsin-like pigment, bacterio-opsin expressed in Escherichia coli was treated in phospholipid-detergent micelles with the retinal analog II, in which the C13-C14 trans-double bond cannot isomerize due to inclusion in a cyclopentene ring. The formation of a complex with a fine structure (lambda max, 439 nm) was first observed. This partially converted over a period of 12 days to a bacteriorhodopsin-like chromophore (ebR-II) with lambda max, 555 nm. An identical behavior has been observed previously upon reconstitution of bleached purple membrane with the analog II. Purification by gel filtration gave pure ebR-II with lambda max, 558 nm, similar to that of light-adapted bacterio-opsin reconstituted with all-trans retinal (ebR-I). Spectrophotometric titration of ebR-II as a function of pH showed that the purple to blue transition of bacteriorhodopsin at acidic pH was altered, and the apparent pKa of Schiff base deprotonation at alkaline pH was lowered by 2.4 units, relative to that of ebR-I. ebR-II showed no light-dark adaptation, no proton pumping, and no intermediates characteristic of the bacteriorhodopsin photocycle. In addition, the rates of reaction with hydroxylamine in the dark and in the light were similar. These results show, as expected, that isomerization of the C13-C14 double bond is required for bacteriorhodopsin function and that prevention of this isomerization confers light insensitivity.  相似文献   

6.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

7.
The proton-pumping mechanism of bacteriorhodopsin is dependent on a photolysis-induced transfer of a proton from the retinylidene Schiff base chromophore to the aspartate-85 counterion. Up until now, this transfer was ascribed to a > 7-unit decrease in the pKa of the protonated Schiff base caused by photoisomerization of the retinal. However, a comparably large increase in the pKa of the Asp-85 acceptor also plays a role, as we show here with infrared measurements. Furthermore, the shifted vibrational frequency of the Asp-85 COOH group indicates a transient drop in the effective dielectric constant around Asp-85 to approximately 2 in the M photointermediate. This dielectric decrease would cause a > 40 kJ-mol-1 increase in free energy of the anionic form of Asp-85, fully explaining the observed pK alpha increase. An analogous photolysis-induced destabilization of the Schiff base counterion could initiate anion transport in the related protein, halorhodopsin, in which aspartate-85 is replaced by Cl- and the Schiff base proton is consequently never transferred.  相似文献   

8.
The preparation and photochemical properties of dried deionized blue membrane (dIbR600; lambdamax approximately 600 nm, epsilon approximately 54, 760 cm-1 M-1, f approximately 1.1) in polyvinyl alcohol films are studied. Reversible photoconversion from dIbR600 to the pink membrane (dIbR485; lambdamax approximately 485 nm) is shown to occur in these films under conditions of strong 647-nm laser irradiation. The pink membrane analog, dIbR485, has a molar extinction coefficient of approximately 39,000 cm-1 M-1 (f approximately 1.2). The ratio of pink --> blue and blue --> pink quantum efficiencies is 33 +/- 5. We observe an additional blue-shifted species (dIbR455, lambdamax approximately 455 nm) with a very low oscillator strength (f approximately 0.6, epsilon approximately 26,000 cm-1 M-1). This species is the product of fast thermal decay of dIbR485. Molecular modeling indicates that charge/charge and charge/dipole interactions introduced by the protonation of ASP85 are responsible for lowering the excited-state all-trans --> 9-cis barrier to approximately 6 kcal mol-1 while increasing the corresponding all-trans --> 13-cis barrier to approximately 4 kcal mol-1. Photochemical formation of both 9-cis and 13-cis photoproducts are now competitive, as is observed experimentally. We suggest that dIbR455 may be a 9-cis, 10-s-distorted species that partially divides the chromophore into two localized conjugated segments with a concomitant blue shift and decreased oscillator strength of the lambdamax absorption band.  相似文献   

9.
Eliash T  Ottolenghi M  Sheves M 《FEBS letters》1999,447(2-3):307-310
An outstanding problem relating to the structure and function of bacteriorhodopsin (bR), which is the only protein in the purple membrane of the photosynthetic microorganism Halobacterium salinarium, is the relation between the titration of Asp-85 and the binding/unbinding of metal cations. An extensively accepted working hypothesis has been that the two titrations are coupled, namely, protonation of Asp-85 (located in the vicinity of the retinal chromophore) and cation unbinding occur concurrently. We have carried out a series of experiments in which the purple blue equilibrium and the binding of Mn2+ ions (monitored by electron spin resonance) were followed as a function of pH for several (1-4) R = [Mn2+]/[bR] molar ratios. Data were obtained for native bR, bR mutants, artificial bR and chemically modified bR. We find that in the native pigment the two titrations are separated by more than a pKa unit [delta pKa = pKa(P/B)-pKa(Mn2+) = (4.2-2.8) = 1.4]. In the non-native systems, delta pKa values as high as 5 units, as well as negative delta pKas, are observed. We conclude that the pH titration of cation binding residues in bR is not directly related to the titration of Asp-85. This conclusion is relevant to the nature of the high affinity cation sites in bR and to their role in the photosynthetic function of the pigment.  相似文献   

10.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

11.
Dioumaev AK  Brown LS  Needleman R  Lanyi JK 《Biochemistry》2001,40(38):11308-11317
In the N to O reaction of the bacteriorhodopsin photocycle, Asp-96 is protonated from the cytoplasmic surface, and coupled to this, the retinal isomerizes from 13-cis,15-anti back to the initial all-trans configuration. To dissect the two steps, and to better understand how and why they occur, we describe the properties of two groups of site-specific mutants in which the N intermediate has greatly increased lifetime. In the first group, with the mutations near the retinal, an unusual N state is produced in which the retinal is 13-cis,15-anti but Asp-96 has a protonated carboxyl group. The apparent pK(a) for the protonation is 7.5, as in the wild-type. It is likely that here the interference with N decay is the result of steric conflict of side-chains with the retinal or with the side-chain of Lys-216 connected to the retinal, which delays the reisomerization after protonation of Asp-96. In the second group, with the mutations located near Asp-96 or between Asp-96 and the cytoplasmic surface, reprotonation of Asp-96 is strongly perturbed. The reisomerization of the retinal occurs only after recovery from a long-living protein conformation in which reprotonation of Asp-96 is either entirely blocked or blocked at low pH.  相似文献   

12.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   

13.
Recently, neutron diffraction experiments have revealed well-resolved and reversible changes in the protein conformation of bacteriorhodopsin (BR) between the light-adapted ground state and the M-intermediate of the proton pumping photocycle (Dencher, Dresselhaus, Zaccai and Büldt (1989) Proc. Natl. Acad. Sci. USA 86, 7876-7879). These changes are triggered by the light-induced isomerization of the chromophore retinal from the all-trans to the 13-cis configuration. Dark-adapted purple membranes contain a mixture of two pigment species with either the all-trans- or 13-cis-retinal isomer as chromophore. Employing a time-resolved neutron diffraction technique, no changes in protein conformation in the resolution regime of up to 7 A are observed during the transition between the two ground-state species 13-cis-BR and all-trans-BR. This is in line with the fact that the conversion of all-trans BR to 13-cis-BR involves an additional isomerization about the C15 = N Schiff's base bond, which in contrast to M formation minimizes retinal displacement and keeps the Schiff's base in the original protein environment. Furthermore, there is no indication for large-scale redistribution of water molecules in the purple membrane during light-dark adaptation.  相似文献   

14.
The role of Asp-212 in the proton pumping mechanism of bacteriorhodopsin (bR) has been studied by a combination of site-directed mutagenesis and Fourier transform infrared difference spectroscopy. Difference spectra were recorded at low temperature for the bR----K and bR----M photoreactions of the mutants Asp-212----Glu, Asp-212----Asn, and Asp-212----Ala. Despite an increased proportion of the 13-cis form of bR (normally associated with dark adaptation), all of the mutants exhibited a light-adapted form containing as a principal component the normal all-trans retinal chromophore. The absence of a shift in the retinal C = C stretching frequency in these mutants indicates that Asp-212 is not a major determinant of the visible absorption wavelength maximum in light-adapted bR. It is unlikely that Asp-212 is the acceptor group for the Schiff base proton since both the Asp-212----Glu and Asp-212----Ala mutants formed an M intermediate. All of the Asp-212 mutants were missing a Fourier transform infrared difference band that had been assigned previously to protonation changes of Tyr-185. These results are discussed in terms of a model in which Tyr-185 and Asp-212 form a polarizable hydrogen bond and are positioned near the C13-Schiff base portion of the chromophore. These 2 residues may be involved in stabilizing the relative orientation of the F and G helices and isomerizing the retinal in a regioselective manner about the C13 = C14 double bond.  相似文献   

15.
We present molecular dynamics simulations of bovine rhodopsin in a membrane mimetic environment based on the recently refined X-ray structure of the pigment. The interactions between the protonated Schiff base and the protein moiety are explored both with the chromophore in the dark-adapted 11-cis and in the photoisomerized all-trans form. Comparison of simulations with Glu181 in different protonation states strongly suggests that this loop residue located close to the 11-cis bond bears a negative charge. Restrained molecular dynamics simulations also provide evidence that the protein tightly confines the absolute conformation of the retinal around the C12-C13 bond to a positive helicity. 11-cis to all-trans isomerization leads to an internally strained chromophore, which relaxes after a few nanoseconds by a switching of the ionone ring to an essentially planar all-trans conformation. This structural transition of the retinal induces in turn significant conformational changes of the protein backbone, especially in helix VI. Our results suggest a possible molecular mechanism for the early steps of intramolecular signal transduction in a prototypical G-protein-coupled receptor.  相似文献   

16.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

17.
Anabaena sensory rhodopsin (ASR) is a novel microbial rhodopsin recently discovered in the freshwater cyanobacterium Anabaena sp. PCC7120. This protein most likely functions as a photosensory receptor as do the related haloarchaeal sensory rhodopsins. However, unlike the archaeal pigments, which are tightly bound to their cognate membrane-embedded transducers, ASR interacts with a soluble cytoplasmic protein analogous to transducers of animal vertebrate rhodopsins. In this study, infrared spectroscopy was used to examine the molecular mechanism of photoactivation in ASR. Light adaptation of the pigment leads to a phototransformation of an all-trans/15-anti to 13-cis/15-syn retinylidene-containing species very similar in chromophore structural changes to those caused by dark adaptation in bacteriorhodopsin. Following 532 nm laser-pulsed excitation, the protein exhibits predominantly an all-trans retinylidene photocycle containing a deprotonated Schiff base species similar to those of other microbial rhodopsins such as bacteriorhodopsin, sensory rhodopsin II, and Neurospora rhodopsin. However, no changes are observed in the Schiff base counterion Asp-75, which remains unprotonated throughout the photocycle. This result along with other evidence indicates that the Schiff base proton release mechanism differs significantly from that of other known microbial rhodopsins, possibly because of the absence of a second carboxylate group at the ASR photoactive site. Several conformational changes are detected during the ASR photocycle including in the transmembrane helices E and G as indicated by hydrogen-bonding alterations of their native cysteine residues. In addition, similarly to animal vertebrate rhodopsin, perturbations of the polar head groups of lipid molecules are detected.  相似文献   

18.
The bacteriorhodopsin (bR) photocycle was followed by use of time-resolved Fourier-transform infrared (FTIR) spectroscopy as a function of temperature (15-85 degrees C) as the alpha(II) --> alpha(I) conformational transition occurs. The photocycle rate increases with increasing temperature, but its efficiency is found to be drastically reduced as the transition takes place. A large shift is observed in the all-trans left arrow over right arrow 13-cis equilibrium due to the increased stability of the 13-cis isomer in alpha(I) form. This, together with the increase in the rate of dark adaptation as the temperature increases, leads to a large increase in the 13-cis isomer concentration in bR in the alpha(I) form. The fact that 13-cis retinal has a much-reduced absorption cross-section and its inability to pump protons leads to an observed large reduction in the concentration of the observed photocycle intermediates, as well as the proton gradient at a given light intensity. These results suggest that nature might have selected the alpha(II) rather than the alpha(I) form as the helical conformation in bR to stabilize the all-trans retinal isomer that is a better light absorber and is capable of pumping protons.  相似文献   

19.
Studies of bacteriorhodopsin have indicated that the charge environment of the protonated Schiff base consists of residues Asp-85, Asp-212, and Arg-82. As shown recently (Marti, T., R?sselet, S. J., Otto, H., Heyn, M. P., and Khorana, H. G. (1991) J. Biol. Chem. 266, 18674-18683), in the double mutant Asp-85----Asn/Asp-212----Asn chromophore formation is restored in the presence of salts, suggesting that exogenous anions function as counterions to the protonated Schiff base. To investigate the role of Arg-82 and of the Schiff base in anion binding, we have prepared the triple mutant Arg-82----Gln/Asp-85----Asn/Asp-212----Asn and compared its properties with those of the Asp-85----Asn/Asp-212----Asn double mutant. Regeneration of the chromophore with absorption maximum near 560 nm occurs in the triple mutant in the presence of millimolar salt, whereas in the double mutant molar salt concentrations are required. Spectrometric titrations reveal that the pKa of Schiff base deprotonation is markedly reduced from 11.3 for the wild type to 4.9 for the triple mutant in 1 mM NaCl and to 5.5 for the double mutant in 10 mM NaCl. In both mutants, increasing the chloride concentration promotes protonation of the chromophore and results in a continuous rise of the Schiff base pKa, yielding a value of 8.4 and 7.6, respectively, in 4 M NaCl. The absorption maximum of the two mutants shows a progressive red shift, as the ionic radius of the halide increases in the sequence fluoride, chloride, bromide, and iodide. An identical spectral correlation in the presence of halides is observed for the acid-purple form of bacteriorhodopsin. We conclude, therefore, that upon neutralization of the two counterions Asp-85 and Asp-212 by mutation or by protonation at low pH, exogenous anions substitute as counterions by directly binding to the protonated Schiff base. This interaction may provide the basis for the proposed anion translocation by the acid-purple form of bacteriorhodopsin as well as by the related halorhodopsin.  相似文献   

20.
To study their role in proton translocation by bacteriorhodopsin, 22 serine and threonine residues presumed to be located within and near the border of the transmembrane segments have been individually replaced by alanine or valine, respectively. Thr-89 was substituted by alanine, valine, and aspartic acid, and Ser-141 by alanine and cysteine. Most of the mutants showed essentially wild-type phenotype with regard to chromophore regeneration and absorption spectrum. However, replacement of Thr-89 by Val and of Ser-141 by Cys caused striking blue shifts of the chromophore by 100 and 80 nm, respectively. All substitutions of Thr-89 regenerated the chromophore at least 10-fold faster with 13-cis retinal than with all-trans retinal. The substitutions at positions 89, 90, and 141 also showed abnormal dark-light adaptation, suggesting interactions between these residues and the retinylidene chromophore. Proton pumping measurements revealed 60-75% activity for mutants of Thr-46, -89, -90, -205, and Ser-226, and about 20% for Ser-141----Cys, whereas the remaining mutants showed normal pumping. Kinetic studies of the photocycle and of proton release and uptake for mutants in which proton pumping was reduced revealed generally little alterations. The reduced activity in several of these mutants is most likely due to a lower percentage of all-trans retinal in the light-adapted state. In the mutants Thr-46----Val and Ser-226----Ala the decay of the photointer-mediate M was significantly accelerated, indicating an interaction between these residues and Asp-96 which reprotonates the Schiff base. Our results show that no single serine or threonine residue is obligatory for proton pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号