首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The nonsegmented negative-strand RNA viruses (order Mononegavirales) include many important human pathogens. The order of their genes, which is highly conserved, is the major determinant of the relative levels of gene expression, since genes that are close to the single promoter site at the 3' end of the viral genome are transcribed at higher levels than those that occupy more distal positions. We manipulated an infectious cDNA clone of the prototypic vesicular stomatitis virus (VSV) to rearrange three of the five viral genes, using an approach which left the viral nucleotide sequence otherwise unaltered. The central three genes in the gene order, which encode the phosphoprotein P, the matrix protein M, and the glycoprotein G, were rearranged into all six possible orders. Viable viruses were recovered from each of the rearranged cDNAs. The recovered viruses were examined for their levels of gene expression, growth potential in cell culture, and virulence in mice. Gene rearrangement changed the expression levels of the encoded proteins in concordance with their distance from the 3' promoter. Some of the viruses with rearranged genomes replicated as well or slightly better than wild-type virus in cultured cells, while others showed decreased replication. All of the viruses were lethal for mice, although the time to symptoms and death following inoculation varied. These data show that despite the highly conserved gene order of the Mononegavirales, gene rearrangement is not lethal or necessarily even detrimental to the virus. These findings suggest that the conservation of the gene order observed among the Mononegavirales may result from immobilization of the ancestral gene order due to the lack of a mechanism for homologous recombination in this group of viruses. As a consequence, gene rearrangement should be irreversible and provide an approach for constructing viruses with novel phenotypes.  相似文献   

2.
3.
4.
5.
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity.  相似文献   

6.
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.  相似文献   

7.
The vesicular stomatitis virus (VSV) matrix (M) protein plays a major role in the virus-induced inhibition of host gene expression. It has been proposed that the inhibition of host gene expression by M protein is responsible for suppressing activation of host interferon gene expression. Most wild-type (wt) strains of VSV induce little if any interferon gene expression. Interferon-inducing mutants of VSV have been isolated previously, many of which contain mutations in their M proteins. However, it was not known whether these M protein mutations were responsible for the interferon-inducing phenotype of these viruses. Alternatively, mutations in other genes besides the M gene may enhance the ability of VSV to induce interferons. These hypotheses were tested by transfecting cells with mRNA expressing wt and mutant M proteins in the absence of other viral components and determining their ability to inhibit interferon gene expression. The M protein mutations were the M51R mutation originally found in the tsO82 and T1026R1 mutant viruses, the double substitution V221F and S226R found in the TP3 mutant virus, and the triple substitution E213A, V221F, and S226R found in the TP2 mutant virus. wt M proteins suppressed expression of luciferase from the simian virus 40 promoter and from the beta interferon (IFN-beta) promoter, while M proteins of interferon-inducing viruses were unable to inhibit luciferase expression from either promoter. The M genes of the interferon-inducing mutants of VSV were incorporated into the wt background of a recombinant VSV infectious cDNA clone. The resulting recombinant viruses were tested for their ability to activate interferon gene expression and for their ability to inhibit host RNA and protein synthesis. Each of the recombinant viruses containing M protein mutations induced expression of a luciferase reporter gene driven by the IFN-beta promoter and induced production of interferon bioactivity more effectively than viruses containing wt M proteins. Furthermore, the M protein mutant viruses were defective in their ability to inhibit both host RNA synthesis and host protein synthesis. These data support the idea that wt M protein suppresses interferon gene expression through the general inhibition of host RNA and protein synthesis.  相似文献   

8.
mSur2, a subunit of the Mediator complex, is required for efficient mouse adenovirus type 1 (MAV-1) replication (L. Fang, J. L. Stevens, A. J. Berk, and K. R. Spindler, J. Virol. 78:12888-12900, 2004). We examined the contributions of early-region 1A (E1A) to mSur2 function in MAV-1 replication with E1A mutant viruses. At a multiplicity of infection (MOI) of 1, viruses containing CR3 replicated better in Sur2+/+ mouse embryonic fibroblasts (MEFs) than in Sur2-/- MEFs. In contrast, viruses lacking CR3 replicated no better in Sur2+/+ than in Sur2-/- MEFs. This result supports the hypothesis that the E1A CR3-mSur2 interaction is important for MAV-1 replication. However, at an MOI of 0.05, viruses lacking CR3 showed replication defects in Sur2-/- MEFs compared to Sur2+/+ MEFs, suggesting an E1A CR3 interaction-independent function of mSur2 in MAV-1 replication in cell culture. Paradoxically, CR1Delta, CR2Delta, and CR3Delta mutant viruses replicated slightly more efficiently than wild-type (wt) MAV-1 and E1A null mutant viruses in Sur2-/- MEFs at an MOI of 0.05. Coinfection of Sur2-/- MEFs with wt MAV-1 and CR1Delta, CR2Delta, or CR3Delta mutant viruses rescued the defects of wt MAV-1 replication. This result suggests that an inhibiting effect on wt E1A protein expression and/or E1A function might account for the severe viral replication defect of MAV-1 in Sur2-/- MEFs at an MOI of 0.05. Moreover, titrations of virus yields from infected brains of inbred strains of mice showed that E1A null and CR3Delta mutant viruses had a significant defect in virus replication compared to wt MAV-1. This result supports the hypothesis that the MAV-1 E1A-mSur2 interaction is important in MAV-1 replication in mice.  相似文献   

9.
Despite their high frequency of RNA recombination, the plus-strand coronaviruses have a characteristic, strictly conserved genome organization with the essential genes occurring in the order 5'-polymerase (pol)-S-E-M-N-3'. We have investigated the significance of this remarkable conservation by rearrangement of the murine coronavirus genome through targeted recombination. Thus, viruses were prepared with the following gene order: 5'-pol-S-M-E-N-3', 5'-pol-S-N-E-M-3', 5'-pol-M-S-E-N-3', and 5'-pol-E-M-S-N-3'. All of these viruses were surprisingly viable, and most viruses replicated in cell culture with growth characteristics similar to those of the parental virus. The recombinant virus with the gene order 5'-pol-E-M-S-N-3' was also tested for the ability to replicate in the natural host, the mouse. The results indicate that the canonical coronavirus genome organization is not essential for replication in vitro and in vivo. Deliberate rearrangement of the viral genes may be useful in the generation of attenuated coronaviruses, which due to their reduced risk of generating viable viruses by recombination with circulating field viruses, would make safer vaccines.  相似文献   

10.
Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1(NL4-3) by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R(2) = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K approximately N42T/N43S > V38A/N42D approximately V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = -0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.  相似文献   

11.
12.
We used vesicular stomatitis virus to test the effect of complementation on the relative fitness of a deleterious mutant, monoclonal antibody-resistant mutant (MARM) N, in competition with its wild-type ancestor. We carried out competitions of MARM N and wild-type populations at different multiplicities of infection (MOIs) and initial ratios of the wild type to the mutant and found that the fitness of MARM N relative to that of the wild type is very sensitive to changes in the MOI (i.e., the degree of complementation) but depends little, if at all, on the initial frequencies of MARM N and the wild type. Further, we developed a mathematical model under the assumption that during coinfection both viruses contribute to a common pool of protein products in the infected cell and that they both exploit this common pool equally. Under such conditions, the fitness of all virions that coinfect a cell is the average fitness in the absence of coinfection of that group of virions. In the absence of coinfection, complementation cannot take place and the relative fitness of each competitor is only determined by the selective value of its own products. We found good agreement between our experimental results and the model predictions, which suggests that the wild type and MARM N freely share all of their gene products under coinfection.  相似文献   

13.
We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping beta-actin and alpha-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy.  相似文献   

14.
15.
To gain information on the specificity of simian virus 40 (SV40) integration in the genome of transformed cells, mouse 3T3 cells were transformed by a temperature-sensitive (ts) SV40 mutant, using high multiplicity of infection (MOI). Transformed cells were superinfected with wild-type (wt) virus at high MOI. Clones were isolated and fused with permissive BSC-1 cells to promote virus rescue. All rescued viruses were of the ts type only. When the high-MOI transformants were infected with 3H-labeled wt SV40, the amount of radioactivity associated with their nuclear fraction was found to be similar to that of 3T3 cells. 3T3 cells were then transformed by ts SV40 at low MOI and superinfected by wt virus at high MOI. Upon fusion with BSC-1 cells, most clones produced both ts and wt virus. These results suggest that the number of stable SV40 integration sites in the 3T3 genome is limited, since they can be saturated by transformation at high MOI. When the MOI is low, the sites are not saturated and a subsequent infection can lead to integration.  相似文献   

16.
The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 10(7) wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny.  相似文献   

17.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

18.
A Cameroonian patient with antibodies reacting simultaneously to human immunodeficiency virus type 1 (HIV-1) group O- and group M-specific V3-loop peptides was identified. In order to confirm that this patient was coinfected with both viruses, PCRs with O- and M-specific discriminating primers corresponding to different regions of the genome were carried out with both primary lymphocyte DNA and the corresponding viral strains isolated from three consecutive patient samples. The PCR data suggested that this patient is coinfected with a group M virus and a recombinant M/O virus. Indeed, only type M gag sequences could be amplified, while for the env region, both type M and O sequences were amplified, from plasma or from DNA extracted from primary lymphocytes. Sequence analysis of a complete recombinant genome isolated from the second sample (97CA-MP645 virus isolate) revealed two intergroup breakpoints, one in the vpr gene and the second in the long terminal repeat region around the TATA box. Comparison of the type M sequences shared by the group M and the recombinant M/O viruses showed that these sequences were closely related, with only 3% genetic distance, suggesting that the M virus was one of the parental viruses. In this report we describe for the first time a recombination event in vivo between viruses belonging to two different groups, leading to a replicative virus. Recombination between strains with such distant lineages (65% overall homology) may contribute substantially to the emergence of new HIV-1 variants. We documented that this virus replicates well and became predominant in vitro. At this time, group O viruses represent a minority of the strains responsible for the HIV-1 pandemic. If such recombinant intergroup viruses gained better fitness, inducing changes in their biological properties compared to the parental group O virus, the prevalences of group O sequences could increase rapidly. This will have important implications for diagnosis of HIV-1 infections by serological and molecular tests, as well as for antiviral treatment.  相似文献   

19.
Cold-adapted (ca) B/Ann Arbor/1/66 is the influenza B virus strain master donor virus for FluMist, a live, attenuated, influenza virus vaccine licensed in 2003 in the United States. Each FluMist vaccine strain contains six gene segments of the master donor virus; these master donor gene segments control the vaccine's replication and attenuation. These gene segments also express characteristic biological traits in model systems. Unlike most virulent wild-type (wt) influenza B viruses, ca B/Ann Arbor/1/66 is temperature sensitive (ts) at 37 degrees C and attenuated (att) in the ferret model. In order to define the minimal genetic components of these phenotypes, the amino acid sequences of the internal genes of ca B/Ann Arbor/1/66 were aligned to those of other influenza B viruses. These analyses revealed eight unique amino acids in three proteins: two in the polymerase subunit PA, two in the M1 matrix protein, and four in the nucleoprotein (NP). Using reverse genetics, these eight wt amino acids were engineered into a plasmid-derived recombinant of ca B/Ann Arbor/1/66, and these changes reverted both the ts and the att phenotypes. A detailed mutational analysis revealed that a combination of two sites in NP (A114 and H410) and one in PA (M431) controlled expression of ts, whereas these same changes plus two additional residues in M1 (Q159 and V183) controlled the att phenotype. Transferring this genetic signature to the divergent wt B/Yamanashi/166/98 strain conferred both the ts and the att phenotypes on the recombinant, demonstrating that this small, complex, genetic signature encoded the essential elements for these traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号