共查询到20条相似文献,搜索用时 0 毫秒
1.
The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression 总被引:6,自引:0,他引:6 下载免费PDF全文
Xiao GH Gallagher R Shetler J Skele K Altomare DA Pestell RG Jhanwar S Testa JR 《Molecular and cellular biology》2005,25(6):2384-2394
Inactivation of the NF2 tumor suppressor gene has been observed in certain benign and malignant tumors. Recent studies have demonstrated that merlin, the product of the NF2 gene, is regulated by Rac/PAK signaling. However, the mechanism by which merlin acts as a tumor suppressor has remained obscure. In this report, we show that adenovirus-mediated expression of merlin in NF2-deficient tumor cells inhibits cell proliferation and arrests cells at G1 phase, concomitant with decreased expression of cyclin D1, inhibition of CDK4 activity, and dephosphorylation of pRB. The effect of merlin on cell cycle progression was partially overridden by ectopic expression of cyclin D1. RNA interference experiments showed that silencing of the endogenous NF2 gene results in upregulation of cyclin D1 and S-phase entry. Furthermore, PAK1-stimulated cyclin D1 promoter activity was repressed by cotransfection of NF2, and PAK activity was inhibited by expression of merlin. Interestingly, the S518A mutant form of merlin, which is refractory to phosphorylation by PAK, was more efficient than the wild-type protein in inhibiting cell cycle progression and in repressing cyclin D1 promoter activity. Collectively, our data indicate that merlin exerts its antiproliferative effect, at least in part, via repression of PAK-induced cyclin D1 expression, suggesting a unifying mechanism by which merlin inactivation might contribute to the overgrowth seen in both noninvasive and malignant tumors. 相似文献
2.
Vaites LP Lee EK Lian Z Barbash O Roy D Wasik M Klein-Szanto AJ Rustgi AK Diehl JA 《Molecular and cellular biology》2011,31(22):4513-4523
Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complexes modulate the accumulation of key cell cycle regulatory proteins. Following the G(1)/S transition, SCF(Fbx4) targets cyclin D1 for proteasomal degradation, a critical event necessary for DNA replication fidelity. Deregulated cyclin D1 drives tumorigenesis, and inactivating mutations in Fbx4 have been identified in human cancer, suggesting that Fbx4 may function as a tumor suppressor. Fbx4(+/-) and Fbx4(-/-) mice succumb to multiple tumor phenotypes, including lymphomas, histiocytic sarcomas and, less frequently, mammary and hepatocellular carcinomas. Tumors and premalignant tissue from Fbx4(+/-) and Fbx4(-/-) mice exhibit elevated cyclin D1, an observation consistent with cyclin D1 as a target of Fbx4. Molecular dissection of the Fbx4 regulatory network in murine embryonic fibroblasts (MEFs) revealed that loss of Fbx4 results in cyclin D1 stabilization and nuclear accumulation throughout cell division. Increased proliferation in early passage primary MEFs is antagonized by DNA damage checkpoint activation, consistent with nuclear cyclin D1-driven genomic instability. Furthermore, Fbx4(-/-) MEFs exhibited increased susceptibility to Ras-dependent transformation in vitro, analogous to tumorigenesis observed in mice. Collectively, these data reveal a requisite role for the SCF(Fbx4) E3 ubiquitin ligase in regulating cyclin D1 accumulation, consistent with tumor suppressive function in vivo. 相似文献
3.
The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death 总被引:7,自引:0,他引:7
Rabizadeh S Xavier RJ Ishiguro K Bernabeortiz J Lopez-Ilasaca M Khokhlatchev A Mollahan P Pfeifer GP Avruch J Seed B 《The Journal of biological chemistry》2004,279(28):29247-29254
The connector enhancer of KSR (CNK) is a multidomain scaffold protein discovered in Drosophila, where it is necessary for Ras activation of the Raf kinase. Recent studies have shown that CNK1 also interacts with RalA and Rho and participates in some aspects of signaling by these GTPases. Herein we demonstrate a novel aspect of CNK1 function, i.e. reexpression of CNK1 suppresses tumor cell growth and promotes apoptosis. As shown previously for apoptosis induced by Ki-Ras(G12V), CNK1-induced apoptosis is suppressed by a dominant inhibitor of the mammalian sterile 20 kinases 1 and (MST1/MST2). Immunoprecipitates of MST1 endogenous to LoVo colon cancer cells contain endogenous CNK1; however, no association of these two polypeptides can be detected in a yeast two-hybrid assay. CNK1 does, however, bind directly to the RASSF1A and RASSF1C polypeptides, constitutive binding partners of the MST1/2 kinases. Deletion of the MST1 carboxyl-terminal segment that mediates its binding to RASSF1A/C eliminates the association of MST1 with CNK1. Coexpression of CNK1 with the tumor suppressive isoform, RASSF1A, greatly augments CNK1-induced apoptosis, whereas the nonsuppressive RASSF1C isoform is without effect on CNK1-induced apoptosis. Overexpression of CNK1-(1-282), a fragment that binds RASSF1A but is not proapoptotic, blocks the apoptosis induced by CNK1 and by Ki-Ras(G12V). Thus, in addition to its positive role in the proliferative outputs of active Ras, the CNK1 scaffold protein, through its binding of a RASSF1A.MST complex, also participates in the proapoptotic signaling initiated by active Ras. 相似文献
4.
The RASSF1A tumor suppressor activates Bax via MOAP-1 总被引:3,自引:0,他引:3
Vos MD Dallol A Eckfeld K Allen NP Donninger H Hesson LB Calvisi D Latif F Clark GJ 《The Journal of biological chemistry》2006,281(8):4557-4563
The novel tumor suppressor RASSF1A is frequently inactivated during human tumorigenesis by promoter methylation. RASSF1A may serve as a node in the integration of signaling pathways controlling a range of critical cellular functions including cell cycle, genomic instability, and apoptosis. The mechanism of action of RASSF1A remains under investigation. We now identify a novel pathway connecting RASSF1A to Bax via the Bax binding protein MOAP-1. RASSF1A and MOAP-1 interact directly, and this interaction is enhanced by the presence of activated K-Ras. RASSF1A can activate Bax via MOAP-1. Moreover, activated K-Ras, RASSF1A, and MOAP-1 synergize to induce Bax activation and cell death. Analysis of a tumor-derived point mutant of RASSF1A showed that the mutant was defective for the MOAP-1 interaction and for Bax activation. Moreover, inhibition of RASSF1A by shRNA impaired the ability of K-Ras to activate Bax. Thus, we identify a novel pro-apoptotic pathway linking K-Ras, RASSF1A and Bax that is specifically impaired in some human tumors. 相似文献
5.
Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. 总被引:4,自引:1,他引:4 下载免费PDF全文
D Resnitzky 《Molecular and cellular biology》1997,17(9):5640-5647
Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts. 相似文献
6.
Arginine vasopressin (AVP) is a nonapeptide long known as an endocrine and paracrine regulator of important systemic functions, namely, vasoconstriction, gluconeogenesis, corticosteroidogenesis, and excretion of water and urea. Here we report, for the first time, that AVP specifically inhibits expression of the cyclin D1 gene, leading to cell cycle blockage and halting cell proliferation. In G0/G1-arrested mouse Y1 adrenocortical tumor cells, maintained in serum-free medium (SFM), AVP mimics FGF2, promoting rapid ERK1/2 activation (5 min) followed by c-Fos protein induction (2 h). PKC inhibitor Go6983 and PI3K inhibitors wortmannin and LY294002 all inhibit ERK1/2 activation by AVP, but not by FGF2. Thus, AVP and FGF2 concur to activate ERK1/2 by different regulatory pathways. However, AVP is not a mitogenic factor for Y1 cells. On the contrary, AVP strongly antagonizes FGF2 late induction (2-5 h) of the cyclin D1 gene, down-regulating both cyclin D1 mRNA and protein. AVP inhibition of cyclin D1 expression is sufficient to block G1 phase progression and cell entry into the S phase, monitored by BrdU nuclear labeling. In addition, AVP completely inhibits proliferation of Y1 cells in 10% fetal calf serum (10% FCS) medium. On the other hand, ectopic expression of the cyclin D1 protein renders Y1 cells resistant to AVP for both entry into the S phase in SFM and continuous proliferation in 10% FCS medium. In conclusion, inhibition of cyclin D1 expression by AVP is an efficient mechanism of cell cycle blockage and consequent proliferation inhibition in Y1 adrenocortical cells. 相似文献
7.
8.
Whitehurst AW Ram R Shivakumar L Gao B Minna JD White MA 《Molecular and cellular biology》2008,28(10):3190-3197
Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G(1)/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G(1). Surprisingly, we found that RASSF1A is also required to restrict SCF(betaTrCP) activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G(1)/S phase cell cycle transition. 相似文献
9.
Cyclin D1 is required at high levels for passage through G1 phase but must be reduced to low levels during S phase to avoid the inhibition of DNA synthesis. This suppression requires the phosphorylation of Thr286, which is induced directly by DNA synthesis. Because the checkpoint kinase ATR is activated by normal replication as well as by DNA damage, its potential role in regulating cyclin D1 phosphorylation was tested. We found that ATR, activated by either UV irradiation or the topoisomerase IIβ binding protein 1 activator, promoted cyclin D1 phosphorylation. Small interfering RNA against ATR inhibited UV-induced Thr286 phosphorylation, together with that seen in normally cycling cells, indicating that ATR regulates cyclin D1 phosphorylation in normal as well as stressed cells. Following double-stranded DNA (dsDNA) breakage, the related checkpoint kinase ATM was also able to promote the phosphorylation of cyclin D1 Thr286. The relationship between these checkpoint kinases and cyclin D1 was extended when we found that normal cell cycle blockage in G1 phase observed following dsDNA damage was efficiently overcome when exogenous cyclin D1 was expressed within the cells. These results indicate that checkpoint kinases play a critical role in regulating cell cycle progression in normal and stressed cells by directing the phosphorylation of cyclin D1. 相似文献
10.
The tumor suppressor RASSF1A in human carcinogenesis: an update 总被引:14,自引:0,他引:14
Dammann R Schagdarsurengin U Seidel C Strunnikova M Rastetter M Baier K Pfeifer GP 《Histology and histopathology》2005,20(2):645-663
Loss of heterozygosity of the small arm of chromosome 3 is one of the most common alterations in human cancer. Most notably, a segment in 3p21.3 is frequently lost in lung cancer and several other carcinomas. We and others have identified a novel Ras effector at this segment, which was termed Ras Association Domain family 1 (RASSF1A) gene. RASSF1 consists of two main variants (RASSF1A and RASSF1C), which are transcribed from distinct CpG island promoters. Aberrant methylation of the RASSF1A promoter region is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A. Hypermethylation of RASSF1A was commonly observed in primary tumors including lung, breast, pancreas, kidney, liver, cervix, nasopharyngeal, prostate, thyroid and other cancers. Moreover, RASSF1A methylation was frequently detected in body fluids including blood, urine, nipple aspirates, sputum and bronchial alveolar lavages. Inactivation of RASSF1A was associated with an advanced tumor stage (e.g. bladder, brain, prostate, gastric tumors) and poor prognosis (e.g. lung, sarcoma and breast cancer). Detection of aberrant RASSF1A methylation may serve as a diagnostic and prognostic marker. The functional analyses of RASSF1A reveal an involvement in apoptotic signaling, microtubule stabilization and mitotic progression. The tumor suppressor RASSF1A may act as a negative Ras effector inhibiting cell growth and inducing cell death. Thus, RASSF1A may represent an epigenetically inactivated bona fide tumor suppressor in human carcinogenesis. 相似文献
11.
12.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4195-4196
Comment on: Pagliuca FW, et al. Mol Cell 2011; 43:406-17. 相似文献
13.
Nakamura K Sakaue H Nishizawa A Matsuki Y Gomi H Watanabe E Hiramatsua R Tamamori-Adachi M Kitajima S Noda T Ogawa W Kasuga M 《The Journal of biological chemistry》2008,283(25):17702-17711
PDK1 (3-phosphoinositide-dependent protein kinase 1) is a key mediator of signaling by phosphoinositide 3-kinase. To gain insight into the physiological importance of PDK1 in cell proliferation and cell cycle control, we established immortalized mouse embryonic fibroblasts (MEFs) from mice homozygous for a "floxed" allele of Pdk1 and from wild-type mice. Introduction of Cre recombinase by retrovirus-mediated gene transfer resulted in the depletion of PDK1 in Pdk1(lox/lox) MEFs but not in Pdk1(+/+) MEFs. The insulin-like growth factor-1-induced phosphorylation of various downstream effectors of PDK1, including Akt, glycogen synthase kinase 3, ribosomal protein S6, and p70 S6 kinase, was markedly inhibited in the PDK1-depleted (Pdk1-KO) MEFs. The rate of serum-induced cell proliferation was reduced; progression of the cell cycle from the G(0)-G(1) phase to the S phase was delayed, and cell cycle progression at G(2)-M phase was impaired in Pdk1-KO MEFs. These cells also manifested an increased level of p27(Kip1) expression and a reduced level of cyclin D1 expression during cell cycle progression. The defect in cell cycle progression from the G(0)-G(1) to the S phase in Pdk1-KO MEFs was rescued by forced expression of cyclin D1, whereas rescue of the defect in G(2)-M progression in these cells required both overexpression of cyclin D1 and depletion of p27(Kip1) by RNA interference. These data indicate that PDK1 plays an important role in cell proliferation and cell cycle progression by controlling the expression of both cyclin D1 and p27(Kip1). 相似文献
14.
Cardiovascular disease is associated with a multitude of pathophysiologic conditions, including vascular smooth muscle cell (VSMC) proliferation in response to vessel injury. Diethylstilbestrol (DES) was previously prescribed for at-risk pregnancies to prevent abortion, miscarriage, and premature labor. Our aim in this study was to elucidate the effects and molecular mechanism of DES on proliferation and cell cycle progression of platelet-derived growth factor (PDGF)-BB-stimulated rat aortic VSMCs. Treating the cells with DES (1-7 μM) dramatically inhibited cell proliferation in a dose-dependent manner without any cytotoxic effects. In addition, DES blocked cell cycle progression from PDGF-BB-stimulated cells, which we found was related to down-regulation of the cell cycle regulatory factors, cyclin D1, and cyclin E. Our data demonstrate that DES inhibits rat aortic VSMC proliferation and cell cycle progression through regulation of cell cycle-related proteins. Therefore, our observations may explain, in part, the mechanistic basis underlying the therapeutic effects of DES in cardiovascular disease. 相似文献
15.
16.
Baksh S Tommasi S Fenton S Yu VC Martins LM Pfeifer GP Latif F Downward J Neel BG 《Molecular cell》2005,18(6):637-650
Tumor cells typically resist programmed cell death (apoptosis) induced by death receptors. Activated death receptors evoke Bax conformational change, cytochrome c release, and cell death. We report that the tumor suppressor gene RASSF1A is required for death receptor-induced Bax conformational change and apoptosis. TNFalpha or TRAIL stimulation induced recruitment of RASSF1A and MAP-1 to receptor complexes and promoted complex formation between RASSF1A and the BH3-like protein MAP-1. Normally, MAP-1 is inhibited by an intramolecular interaction. RASSF1A/MAP-1 binding relieved this inhibitory interaction, resulting in MAP-1 association with Bax. Deletion of the RASSF1A gene or short hairpin silencing of either RASSF1A or MAP-1 expression blocked MAP-1/Bax interaction, Bax conformational change and mitochondrial membrane insertion, cytochrome c release, and apoptosis in response to death receptors. Our findings identify RASSF1A and MAP-1 as important components between death receptors and the apoptotic machinery and reveal a potential link between tumor suppression and death receptor signaling. 相似文献
17.
The initiation of mitosis requires the activation of M-phase promoting factor (MPF). MPF activation and its subcellular localization are dependent on the phosphorylation state of its components, cdc2 and cyclin B1. In a two-hybrid screen using a bait protein to mimic phosphorylated cyclin B1, we identified a novel interaction between cyclin B1 and patched1 (ptc1), a tumor suppressor associated with basal cell carcinoma (BCC). Ptc1 interacted specifically with constitutively phosphorylated cyclin B1 derivatives and was able to alter their normal subcellular localization. Furthermore, addition of the ptc1 ligand, sonic hedgehog (shh), disrupts this interaction and allows cyclin B1 to localize to the nucleus. Expression of ptc1 in 293T cells was inhibitory to cell proliferation; this inhibition could be relieved by coexpression of a cyclin B1 derivative that constitutively localizes to the nucleus and that could not interact with ptc1 due to phosphorylation-site mutations to ALA: In addition, we demonstrate that endogenous ptc1 and endogenous cyclin B1 interact in vivo. The findings reported here demonstrate that ptc1 participates in determining the subcellular localization of cyclin B1 and suggest a link between the tumor suppressor activity of ptc1 and the regulation of cell division. Thus, we propose that ptc1 participates in a G(2)/M checkpoint by regulating the localization of MPF. 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(3):408-416
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression. 相似文献
19.
Jen-Tai Lin Hao-Yi Li Nan-Shan Chang Cheng-Han Lin Yu-Chia Chen Pei-Jung Lu 《Cell cycle (Georgetown, Tex.)》2015,14(3):408-416
WW domain-containing oxidoreductase (WWOX) has been reported to be a tumor suppressor in multiple cancers, including prostate cancer. WWOX can induce apoptotic responses to inhibit tumor progression, and the other mechanisms of WWOX in tumor suppression have also been reported recently. In this study, we found significant down-regulation of WWOX in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. In addition, an ectopically increased WWOX expression repressed tumor progression both in vitro and in vivo. Interestingly, overexpression of WWOX in 22Rv1 cells led to cell cycle arrest in the G1 phase but did not affect sub-G1 in flow cytometry. GFP-WWOX overexpressed 22Rv1 cells were shown to inhibit cell cycle progression into mitosis under nocodazole treatment in flow cytometry, immunoblotting and GFP fluorescence. Further, cyclin D1 but not apoptosis correlated genes were down-regulated by WWOX both in vitro and in vivo. Restoration of cyclin D1 in the WWOX-overexpressed 22Rv1 cells could abolish the WWOX-mediated tumor repression. In addition, WWOX impair c-Jun-mediated cyclin D1 promoter activity. These results suggest that WWOX inhibits prostate cancer progression through negatively regulating cyclin D1 in cell cycle lead to G1 arrest. In summary, our data reveal a novel mechanism of WWOX in tumor suppression. 相似文献
20.
DACH1 is a cell fate determination factor that inhibits cyclin D1 and breast tumor growth 总被引:1,自引:0,他引:1 下载免费PDF全文
Wu K Li A Rao M Liu M Dailey V Yang Y Di Vizio D Wang C Lisanti MP Sauter G Russell RG Cvekl A Pestell RG 《Molecular and cellular biology》2006,26(19):7116-7129
Obstacles to the expansion of cells with proliferative potential include the induction of cell death, telomere-based senescence, and the pRb and p53 tumor suppressors. Not infrequently, the molecular pathways regulating oncogenesis recapitulate aberrations of processes governing embryogenesis. The genetic network, consisting of the dachshund (dac), eyes absent (eya), eyeless, and sine oculis (so) genes, regulates cell fate determination in metazoans, with dac serving as a cointegrator through a So DNA-binding factor. Here, DACH1 inhibited oncogene-mediated breast oncogenesis, blocking breast cancer epithelial cell DNA synthesis, colony formation, growth in Matrigel, and tumor growth in mice. Genetic deletion studies demonstrated a requirement for cyclin D1 in DACH1-mediated inhibition of DNA synthesis. DACH1 repressed cyclin D1 through a novel mechanism via a c-Jun DNA-binding partner, requiring the DACH1 alpha-helical DS domain which recruits corepressors to the local chromatin. Analysis of over 2,000 patients demonstrated increased nuclear DACH1 expression correlated inversely with cellular mitosis and predicted improved breast cancer patient survival. The cell fate determination factor, DACH1, arrests breast tumor proliferation and growth in vivo providing a new mechanistic and potential therapeutic insight into this common disease. 相似文献