首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated to determine the source of ceramide produced during the genotoxic apoptosis induced by the anti-cancer drug, camptothecin (CPT), in human prostate cancer LNCaP cells by measuring the activities of acid and neutral sphingomyelinases (SMase) and by using fumonisinB(1) (FB(1)), the inhibitor of ceramide synthase involving de novo synthesis of ceramide. In contrast to time-dependent elevation of intracellular ceramide level after CPT-treatment, the activities of both SMases were not increased but rather decreased. Instead, pretreatment for 3 h with FB(1) (100 microM), an inhibitor of ceramide synthase, almost completely abrogated ceramide accumulation observed in cells exposed to CPT for 18 h. These results indicate that ceramide is produced via de novo pathway but not via sphingomyelin hydrolysis pathway. Furthermore, it is to be noted that the pretreatment with FB(1) did not affect the CPT-induced apoptosis as assessed by DNA ladder formation, Hoechst 33342 staining, flow cytometry, and mitochondrial potential thereby leading us to propose that ceramide accumulation is independent of apoptosis in this system.  相似文献   

2.
Hexadecylphosphocholine (HePC) is an anticancer agent whose effect has been shown to involve apoptosis induction but the signaling pathways leading to apoptosis remain to be elucidated. We show here that HePC induces activation of caspase-9, -3, and -8 via the intrinsic pathway, release of cytochrome c, activation and relocation of Bax to the mitochondria as well as the cleavage of Bid. Moreover, a lysosomal pathway characterized by partial lysosomal rupture, cathepsin B activation and relocation from lysosomes to the cytosol, is involved in HePC-induced apoptosis. A cathepsin B/L inhibitor partially suppresses caspase activation and apoptosis induction, indicating signaling between lysosomes and mitochondria. Conversely, the pancaspase inhibitor Q-VD-OPH inhibits lysosomal rupture, but only at early time points, suggesting that immediate lysosomal rupture involves caspases. Overexpression of Bcl-2, an anti-apoptotic protein known to prevent mitochondrial dysfunction, totally abrogates lysosomal destabilization and cell death.  相似文献   

3.
Macrophages (M?) and dendritic cells (DC) are the major target cell populations of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a method employed by multiple pathogens to ensure their survival in the infected cell. Leishmania has been shown to protect M? and neutrophils from both natural and induced apoptosis. As shown in this study, apoptosis in monocyte-derived dendritic cells (moDC) induced by treatment with camptothecin was downregulated by coincubation with L. mexicana, as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low molecular weight DNA fragments, and annexin V binding to phosphatidylserine. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in moDC. The capacity of L. mexicana to delay apoptosis induction in the infected moDC may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.  相似文献   

4.
We have examined the effects of tumor necrosis factor alpha (TNF alpha) and its second messenger, ceramide, on HMGCoA reductase, the rate-limiting enzyme in the mevalonate pathway. Treatment of human U-937 and HL-60 cells with TNF alpha or C2-ceramide inhibited both expression and activity of HMGCoA reductase in a time-dependent manner. Maturation of p21(ras) was also inhibited in a mevalonate-dependent fashion. The addition of mevalonate to both U-937 and HL-60 cells could also partially prevent TNF alpha and ceramide-induced apoptosis. These results support the hypothesis that the inhibition of HMGCoA reductase expression and the subsequent decrease in prenylation of proteins such as p21(ras) are part of the mechanism by which TNF alpha induces apoptosis in these cells.  相似文献   

5.
Modulation of host cell apoptosis has been observed in many bacterial, protozoal, and viral infections. The aim of this work was to investigate the effect of viscerotropic Leishmania (L.) infantum infection on actinomycin D-induced apoptosis of the human monocytic cell line U-937. Cells were infected with L. infantum promastigotes or treated with the surface molecule lipophosphoglycan (LPG) or with parasite-free supernatant of Leishmania culture medium and submitted to action of actinomycin D as the apoptosis-inducing agent. Actinomycin D-induced apoptosis in U-937 cells was inhibited in the presence of both viable L. infantum promastigotes and soluble factors contained in Leishmania culture medium or purified LPG. Leishmania infantum affected the survival of U-937 cells via a mechanism involving inhibition of caspase-3 activation. Furthermore, protein kinase C delta (PKC delta) cleavage was increased in actinomycin D-treated U-937 cells and was inhibited by the addition of LPG. Thus, inhibition of the PKC-mediated pathways by LPG can be implicated in the enhanced survival of the parasites. These results support the claim that promastigotes of L. infantum, as well as its surface molecule, LPG, which is in part released in the culture medium, inhibit macrophage apoptosis, thus allowing intracellular parasite survival and replication.  相似文献   

6.
New BODIPY-based pH probes have been designed with excitation and emission wavelengths suitable for fluorescence microscopy and flow cytometry. These pH probes are cell-permeable, selectively label lysosomes, and can be used for noninvasive monitoring of lysosomal pH changes during physiological and pathological processes.  相似文献   

7.
8.
9.
In order to overcome chemotherapy resistance, many laboratories are searching for agents that increase the sensitivity of cancer cells to anticancer drugs. Arsenic trioxide (As2O3) is widely used in treating human acute polymyelocytic leukemia (APL). However, solid tumors and other leukemia cells such as U937 promonocytic leukemia cells are insensitive to As2O3. Esculetin, a coumarin derivative, has previously induced cell cycle arrest and apoptosis of HL-60 cells as well as enhanced taxol-induced apoptosis in HepG2 cells, thereby displaying anticancer potential. In this study, esculetin inhibited proliferation and mitogen activated protein kinases (MAPKs) activation in human leukemia U937 cells. Since inhibitors of MAPKs have modulated the GSH-redox state and enhanced the sensitivity of leukemia cells to As2O3-provoked apoptosis, we monitored the effect of combining esculetin and As2O3 (2.5 μM) on the GSH level. Our study showed that esculetin, PD98059 (MEK/ERK inhibitor), and SP600125 (JNK inhibitor) similarly enhanced the As2O3-induced GSH depletion. We found that the As2O3 (2.5 μM) treatment slightly induced apoptosis and the pretreatment of esculetin enhanced the As2O3-provoked apoptosis significantly. In addition, esculetin enhanced the effect of As2O3 on caspase activation in U937 cells. We compared the combined esculetin and As2O3 treatment to the As2O3 treated alone. The combined esculetin and As2O3 treatment increased Bid cleavage, Bax conformation change and cytochrome C release. The study also indicated that esculetin enhanced the As2O3-induced lysosomal leakage and apoptosis. Furthermore, pretreatment with N-acetylcysteine (NAC) reduced these enhanced effects. Based on these studies, esculetin enhances the As2O3-provoked apoptosis by modulating the MEK/ERK and JNK pathways and reducing intracellular GSH levels. GSH depletion led to higher oxidative stress which activated lysosomal-mitochondrial pathway of apoptosis.  相似文献   

10.
Sanazole has been tested clinically as a hypoxic cell radiosensitizer. In this study, we determined whether sanazole enhances the radiation-induced apoptosis of human lymphoma U937 cells. Our results revealed that, compared with 10 mM sanazole or radiation alone, the combination of both resulted in a significant enhancement of apoptosis after 6 h, which was evaluated on the basis of DNA fragmentation, morphological changes, and phosphatidylserine externalization. Sanazole alone enhanced intracellular superoxide and hydrogen peroxide formation, which further increased when the cells were irradiated. Significant enhancement of Fas externalization, loss of mitochondrial membrane potential (MMP), and activation of caspase-3 and caspase-8 were observed after the combined treatment. Moreover, this combination could also enhance Bid activation, reduction of Hsp70 expression level and release of cytochrome c from the mitochondria to the cytosol. An immediate increase in the intracellular Ca2+ concentration ([Ca2+] i ) was observed after the combined treatment. These results suggest that the intracellular superoxide and peroxide generated by sanazole might be involved in the enhancement of radiation-induced apoptosis, and that these effects are associated with modulation of the Fas-mitochondria-caspase-dependent pathway, an increase in [Ca2+] i , and a decrease in the Hsp70 expression levels.  相似文献   

11.
Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 μg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2α and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells. Jin and Song contributed equally to this article.  相似文献   

12.
Zhou L  Beuerman RW  Huang L  Barathi A  Foo YH  Li SF  Chew FT  Tan D 《Proteomics》2007,7(17):3194-3206
The cornea is the major refracting optical element of the eye and therefore critical for forming a retinal image. The exposed surface of the eye is protected from pathogens by the innate immune system whose components include defensins, naturally occurring peptides with antimicrobial properties, and the physical barrier formed by the outer epithelial layer of the cornea. The proteomic approach has revealed that tear levels of defensins are correlated with the course of healing of an experimental corneal wound. Tears were collected from New Zealand White rabbits prior to (day 0) and daily for 5 days (days 1-5) following a standard unilateral 6 mm diameter corneal epithelial abrasion. Tear protein profiles obtained from wounded and contra-lateral control eyes were compared using SELDI ProteinChip technology. Peptides and proteins of interest were purified by RP-HPLC and characterized by nanoESI-MS/MS. Mass spectra of tears on post-wound day 1, revealed 13 peaks whose level decreased and five that increased. During wound healing the tear protein profile correlated with wound closure. An important finding was that the levels of rabbit defensins (NP-1 and NP-2), which were elevated after wounding returned to normal levels by the time the corneal abrasion healed. Relative quantification of NP-2 in tear fluid prior to (day 0) and after corneal wounding (days 1- 3) was determined using iTRAQ technology. A corneal wound eliminates the barrier function of innate immunity and puts the cornea at risk from microbial attack until the epithelial cells restore the surface barrier. The increased availability of defensins in the tears during healing suggests that these peptides could protect the cornea from microbial attack during a period of increased vulnerability.  相似文献   

13.
In the present study, we investigated the role of recombinant human phospholipase D2 (rhPLD2) on proliferation and apoptosis in human leukemia HL-60 cells which induced by camptothecin. Our research demonstrated that various concentrations of rhPLD2 inhibit the growth of HL-60 cells in a dose-dependent manner, and rhPLD2 plus camptothecin can produce a synergistic effect on growth inhibition of HL-60 cells in vitro. So, we conclude that rhPLD2 alone cannot induce apoptosis in HL-60 cells, but it can potentiate the apoptosis of HL-60 cells induced by camptothecin. Similarly, we show that both rhPLD2 and standard PLD were able to enhance camptothecin-induced apoptosis of HL-60 cells.  相似文献   

14.
To define the molecular mechanisms that mediate hyperthermia-induced apoptosis, we performed microarray and computational gene expression analyses. U937 cells, a human myelomonocytic lymphoma cell line, were treated with hyperthermia at 42 °C for 90 min and cultured at 37 °C. Apoptotic cells (∼15%) were seen 6 h after hyperthermic treatment, and elevated expression of heat shock proteins (HSPs) including Hsp27, Hsp40, and Hsp70 was detected, following the activation of heat shock factor-1. Of the 54,675 probe sets analyzed, 1334 were upregulated and 4214 were downregulated by >2.0-fold in the cells treated with hyperthermia. A non-hierarchical gene clustering algorithm, K-means clustering, demonstrated 10 gene clusters. The gene network U1 or U2 that was obtained from up-regulated genes in cluster I or IX contained HSPA1B, DNAJB1, HSPH1, and TXN or PML, LYN, and DUSP1, and were mainly associated with cellular compromise, and cellular function and maintenance or death, and cancer, respectively. In the decreased gene cluster II, the gene network D1 including CCNE1 and CEBPE was associated with the cell cycle and cellular growth and proliferation. These findings will provide a basis for understanding the detailed molecular mechanisms of apoptosis induced by hyperthermia at 42 °C in cells.  相似文献   

15.
16.
Concurrent administration of paclitaxel and vinorelbine results in cytotoxicity in vivo and in vitro in a number of tumor cell lines, yet the mechanisms of enhanced cell killing are undefined. In studies here, we show that low concentrations (1 nM) of paclitaxel and vinorelbine in combination result in enhanced cell killing by apoptosis (P<0.05) in the human lung adenocarcinoma cell line, A-549. In contrast, necrotic cell death and formation of multinucleated cells, which were significantly increased by paclitaxel (P<0.05) alone, but not vinorelbine, were not increased synergistically by both drugs. Paclitaxel also caused microtubular disruption which was not observed with vinorelbine. These data provide further rationale for the combined use of paclitaxel and vinorelbine in clinical trials, and suggest that the cooperative effects of drugs on apoptosis are not mediated through similar disruptional effects on microtubules.  相似文献   

17.
Naturally occurring organic sulfur compounds (OSCs), such as linear allylsulfides from Allium species, are attracting attention in cancer research, since several OSCs were shown to act beneficially both in chemoprevention and in chemotherapy, while hardly exerting any harmful side effects. Hence, we investigated the possible role of different OSCs in the treatment of leukemia. Thereby, we found that the compounds tested in this study induced apoptosis in U937 cells, with an efficiency depending on the number of sulfides, and selected the most promising candidate, diallyltetrasulfide (Al2S4), for detailed mechanistic studies. Here we show that Al2S4 induced an accumulation of cells in early mitosis (G2/M phase), followed by the activation of caspase-dependent apoptosis. The compound counteracted different anti-apoptotic Bcl-2 family members (Bcl-xL, phospho-Bad and Bcl-2), promoted activation of Bax and Bak and induced the release of cytochrome c into the cytoplasm. Treatment by Al2S4 let to the identification of early apoptotic events including Bcl-xL degradation, Bak activation and release of cytochrome c followed by late events including Bcl-2 proteolysis, Bax activation, Bad dephosphorylation, caspase activation, nuclear fragmentation and phosphatidylserine exposure. Claudia Cerella and Christiane Scherer, both authors equally contributed to this work.  相似文献   

18.
Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC50 values obtained for both cell lines using the MTT and trypan blue exclusion assays 5 h after BPC treatment were lower than 8.0 μM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.  相似文献   

19.
The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.  相似文献   

20.
Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-γ1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-κB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号