首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In pancreatic acini, cGMP can be increased by secretagogues such as cholecystokinin (CCK), cholinergic agents, and bombesin, whose actions on enzyme secretion are believed to be mediated by protein kinase C. However, the role of cGMP in acinar cell function has been unclear. A recent paper by Rogers et al. (Rogers, J., Hughes, R.G., and Matthews, E. K. (1988) J. Biol. Chem. 263, 3713-3719) reported that two analogues of cGMP, N2,O2-dibutyl guanosine 3':5'-monophosphate (Bt2cGMP) and 8-bromoguanosine 3':5'-monophosphate (8Br-cGMP), at concentrations in the nanomolar range, inhibited the stimulation of amylase secretion caused by CCK-8, bethanechol, bombesin, and 12-O-tetradecanoylphorbol-13-acetate (TPA). Rogers et al. also reported that sodium nitroprusside inhibited the stimulation of enzyme secretion caused by CCK-8 or TPA. These authors concluded that cGMP inhibits protein kinase C-mediated secretion in pancreatic acini. In the present study we attempted to confirm the findings of Rogers et al., We found, however, that Bt2cGMP inhibited CCK-8-stimulated amylase release only at concentrations of the nucleotide above 10 microM. Moreover, there was a close correlation between the ability of Bt2cGMP to inhibit CCK-8-stimulated amylase release and its ability to inhibit binding of 125I-CCK-8. Bt2cGMP, at concentrations as high as 3 mM, did not alter the stimulation of amylase release caused by carbachol, bombesin, TPA, or A23187. 8Br-cGMP, at concentrations up to 1 mM, did not inhibit the stimulation of amylase release caused by CCK-8 or TPA. At concentrations above 0.1 mM, 8Br-cGMP augmented the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Sodium nitroprusside, at a concentration that causes a 60-fold increase in cGMP, did not inhibit the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Our results do not confirm the findings of Rogers et al. and indicate that cGMP does not inhibit protein kinase C-mediated secretion in pancreatic acini.  相似文献   

2.
Dispersed mouse and guinea-pig pancreatic acini were used to examine the effects of the inositol analogue, γ-hexachlorocyclohexane (lindane) on agonist-stimulated amylase secretion. Secretion from mouse acini in response to carbachol and cholecystokinin octapeptide (CCK-8) was reduced by lindane. Similarly, amylase release from guinea-pig acini stimulated by carbachol was abolished by lindane. These acini, however, still remained responsive to dibutyryl-cAMP with only a slightly diminished secretion to this agent. Inositol phospholipid synthesis and hydrolysis was stimulated in mouse acini by both carbachol and CCK-8. Although hydrolysis of these lipids in response to CCK-8 was reduced by only 18%, stimulation of inositol phospholipid synthesis by either agonist was abolished by lindane. Dose-response curves for inositol phospholipid synthesis stimulated by carbachol and CCK-8 in mouse acini were biphasic and superimposable with those of amylase secretion. In contrast, the dose-response curve for phosphoinositide hydrolysis was sigmoid and clearly separable from that of synthesis. Reducing the external Ca2+ concentration caused the dose-response curves for carbachol- and CCK-8-induced inositol phospholipid synthesis to be displaced to the right, as has been observed for amylase secretion. A23187 was also found to induce amylase secretion and inositol phospholipid synthesis, and both of these responses were inhibited by lindane. Amylase secretion and inositol phospholipid synthesis may, therefore, be closely related events in the exocrine pancreas. Lindane may provide a valuable tool with which to determine the role of inositol phospholipid metabolism in stimulus-response coupling.  相似文献   

3.
Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated 45Ca2+ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10(-8)M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 X 10(-7) M) or hydroxylamine (50 microM) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism.  相似文献   

4.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

5.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

6.
The secretion of amylase, trypsinogen, chymotrypsinogen and proelastase from isolated rat dispersed pancreatic acini was investigated in the absence (basal) and presence of two concentrations of CCK8 (50 and 500 pM), carbachol (2.5 and 7.5 microM) and secretin (10 nM and 1 microM). The unstimulated (basal) rate of release of each of the digestive enzymes was essentially the same. However, whereas both doses of CCK8 and carbachol caused a preferential release of chymotrypsinogen over that of amylase and trypsinogen, the magnitude of stimulated release of amylase, trypsinogen and chymotrypsinogen by 1 microM secretin was found to be similar for each of the enzymes. Furthermore, none of the secretagogues caused a significant enhancement in proelastase release. The present data demonstrate that whereas CCK8 and carbachol induce a greater release of chymotrypsinogen over that of amylase or trypsinogen, release of all three enzymes was equally stimulated by secretin from isolated pancreatic acini.  相似文献   

7.
The effect of mepacrine (DL-quinacrine-HCI), a specific inhibitor of phospholipase C, on cyclic-GMP levels in human platelets was investigated. The concentrations of mepacrine producing 50% inhibition of human platelet aggregation induced by 5 microM ADP and 3 micrograms/ml of collagen were 50 +/- 8 and 70 +/- 15 microM, respectively. Addition of mepacrine to human platelet suspension resulted in increases in cyclic GMP. In contrast to cyclic-GMP levels, cyclic-AMP content was not affected by mepacrine. Mepacrine did not stimulate guanylate cyclase, but did specifically inhibit human platelet cyclic-GMP phosphodiesterase, separated from cyclic-AMP phosphodiesterase or other forms of phosphodiesterase on DEAE-cellulose columns. Stimulation by cyclic GMP of human platelet cyclic-GMP-stimulated cyclic-AMP phosphodiesterase activity was not inhibited by mepacrine. The IC50 value of the drug for cyclic-GMP phosphodiesterase was 40 microM, and IC50 for cyclic-AMP phosphodiesterase was 1.2 mM. Mepacrine was 30-times more potent as an inhibitor of human platelet cyclic GMP than of cyclic-AMP phosphodiesterase. Mepacrine blocks arachidonate release from human platelets by inhibiting phosphatidylinositol-specific phospholipase C. The increase in cyclic-GMP levels produced by addition of mepacrine will explain part of the pharmacological action of this drug.  相似文献   

8.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

9.
Antimuscarinic effects of chloroquine in rat pancreatic acini   总被引:2,自引:0,他引:2  
Chloroquine inhibited carbachol-induced amylase release in a dose-dependent fashion in rat pancreatic acini; cholecystokinin- and bombesin-induced secretory responses were almost unchanged by the antimalarial drug. The inhibition of carbachol-induced amylase release by chloroquine was competitive in nature with a Ki of 11.7 microM. Chloroquine also inhibited [3H]N-methylscopolamine binding to acinar muscarinic receptors. The IC50 for chloroquine inhibition of [3H]N-methylscopolamine binding was lower than that for carbachol or the other antimalarial drugs, quinine and quinidine. These results demonstrate that chloroquine is a muscarinic receptor antagonist in the exocrine pancreas.  相似文献   

10.
We examined receptor occupation, calcium mobilization and amylase release for cholecystokinin octapeptide (CCK-8) within a 3-min incubation period at 37 degrees C using dispersed acini from rat pancreas. Analysis of competitive binding inhibition data obtained after a 3-min incubation revealed the presence of only a single class of CCK receptors, while two classes of CCK receptor, i.e., high-affinity and low-affinity CCK receptors, were detected when binding reached a steady-state after a 60-min incubation. The IC50 of CCK receptors calculated from the 3-min binding data was 19.0 +/- 0.5 nM (mean +/- S.D.), close to the Kd of the low-affinity CCK receptors determined by equilibrium binding studies. Exposure of fura-2-loaded acini to 10-1000 pM CCK-8 caused an immediate and dose-dependent increase in [Ca2+]i followed by a gradual decrease in [Ca2+]i. The CCK-stimulated amylase release after 3 min of incubation was biphasic; amylase release increased over the dose range of 3-300 pM CCK-8, peaked at 300 pM CCK-8 and decreased with supramaximal concentrations of CCK-8. Our data suggest that occupation of the low-affinity, but not the high-affinity, CCK receptors is more directly associated with calcium mobilization and subsequent stimulation of amylase release in rat pancreatic acini.  相似文献   

11.
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III.  相似文献   

12.
为探讨胰多肽抑制胰酶分泌的机制,我们利用大鼠离体胰腺泡制备观察了牛胰多肽(BPP)在细胞受体水平对氨甲酰胆碱等促分泌物作用的影响。实验结果显示,BPP 对氨甲酰胆碱诱导的胰腺泡淀粉酶分泌具有抑制作用,并存在剂量反应关系。BPP0.1μmol/L 和0.2μmol/L,可分别使氨甲酰胆碱诱导淀粉酶分泌的效价降低3倍和10倍;BPP 还可抑制氨甲酰胆碱刺激胰腺泡释放~(45)Ca。以上结果提示,BPP 对胰腺泡的胆碱能 M 受体具有拮抗作用。此外,BPP 对促胰液素及其同类激动剂和氨甲酰胆碱协同作用诱导的胰腺泡淀粉酶分泌具有抑制作用,提示胰多肽在整体对促胰液素诱导的胰酶分泌的抑制,可能是通过拮抗胰腺泡细胞上的 M 受体而抑制了促胰液素和胆碱能刺激协同作用引起的胰酶分泌。  相似文献   

13.
The role of extracellular Ca2+ in pancreatic acinar membrane damage (cellular injury) by nicotine, membrane-active agents (mellitin, snake venom and Ca2+ ionophore A23187) and secretagogues (CCK-8 and secretin) was investigated. Freshly isolated dispersed pancreatic acini from 18 h fasted adult rats were incubated with one of the aforementioned agents, in the absence and presence of Ca2+. Cellular injury was assessed by measuring the release of pulse-labeled 51Cr and LDH. In addition, release of amylase, trypsinogen and chymotrypsinogen was also determined. In the absence of Ca2+ nicotine (6 mM) caused a profound release of 51Cr and LDH as well as amylase, trypsinogen and chymotrypsinogen from the isolated pancreatic acini. Release of these enzymes and 51Cr decreased sharply with addition of increasing concentrations (0.25-5 mM) of Ca2+. Release of 51Cr and amylase by snake venom (50 micrograms/ml) was found to be 100 and 25% higher, respectively, in the absence of Ca2+ than in its presence. On the other hand, the Ca2+ ionophore A23187 (7 micrograms/ml) was found to be effective in releasing 51Cr and amylase only in the presence of Ca2+. CCK-8, (0.25nM), secretin (1 microM) and mellitin (0.5 microgram/ml) although significantly stimulated amylase secretion (225-350%) in the presence of Ca2+, none of the agents induced 51Cr release from acini, either in the absence or in the presence of extracellular Ca2+. It is concluded that the extracellular Ca2+ plays no specific role in cytotoxic injury in isolated pancreatic acini.  相似文献   

14.
The effects of chloroquine and mepacrine were determined on the release of slow reacting substances (leukotrienes) from lung fragments in vitro. These drugs have been shown in a variety of tissues to inhibit phospholipase A2, and thus to reduce the availability of arachidonate, which is a substrate for leukotriene biosynthesis. Leukotriene and histamine release from unsensitized human lung was stimulated by calcium ionophore A23187, and from actively sensitized guinea-pig lung, by ovalbumin. Chloroquine (10 microM and 100 microM) significantly inhibited leukotriene release in lung from both species, and at 100 microM also inhibited histamine release. Mepacrine (10 microM) inhibited leukotriene release in human lung and at 100 microM in guinea-pig lung. The effects of chloroquine (100 microM) on leukotriene release were counteracted by the presence of arachidonic acid (10 microM), which suggests that chloroquine had impaired the availability of arachidonate. It seems probable that chloroquine and mepacrine inhibit leukotriene release by inhibition of phospholipase A2 in lung.  相似文献   

15.
1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion   总被引:5,自引:0,他引:5  
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.  相似文献   

16.
More information is needed on the physiological role of the tachykinins (TKs), especially neurokinin3-receptor (NK3) agonists, in the pancreas. In this paper we investigated and compared the effect of PG-KII (10(-9) to 10(-6) M), a natural NK3-receptor agonist, with that of the known secretagogues substance P (10(-9) to 10(-6)M), caerulein (10(-11) to 10(-8) M) and carbachol (10(-8) to 10(-5) M), on amylase secretion from dispersed pancreatic acini of the guinea pig and rat. PG-KII (10(-7) M) significantly increased basal amylase release from guinea pig pancreatic acini (from 5.4+/-0.9% to 11.3+/-0.5%, P < 0.05) but left basal release in the rat unchanged (6.5+/-0.5%). The stimulant effect of PG-KII on guinea pig acini was significantly reduced by the NK3-receptor antagonist, SR 142801 (5 x 10(-7) M), and left unchanged by the NK1-receptor antagonist, SR 140333 (5 x 10(-7) M). Conversely, substance P (10(-7) M) significantly stimulated amylase secretion from rat and guinea pig acini (12.6+/-0.6% and 12.1+/-0.7%, P < 0.05). This stimulated effect of substance P was antagonized by the NK1--receptor antagonist (5 x 10(-7) M), but not by the NK3-receptor antagonist (5 x 10(-7) M). The PG-KII- and substance P-evoked maximal responses were lower than those evoked by caerulein (10(-9) M) (guinea pig, 19.1+/-1.3%; rat, 1802+/-0.9%, P < 0.01) and carbachol (10(-5) M) (guinea pig, 23.3+/-1.2%; rat, 24.0+/-1.1%, P < 0.01). The inhibitors of phospholipase C U-73122 (10(-5) M), phospholipase A2 quinacrine (10(-5)M), and protein tyrosine kinase genistein (10(-4) M), partly but significantly inhibited PG-KII, as well as carbachol-stimulated amylase release. Coincubation of PG-KII 10(-7) M with submaximal doses of caerulein (10(-11) to 10(-10) M) and carbachol (10(-7) to 10(-6) M) had an additive effect on amylase release. Pre-incubation with PG-KII (10(-7) M) for 30 min significantly reduced the subsequent amylase response to PG-KII, whereas pre-incubation with caerulein 10(-10) M or carbachol 10(-6) M did not. These findings suggest that PG-KII directly contributes to pancreatic exocrine secretion by interacting with acinar NK3 receptors of the guinea pig but not of the rat. PG-KII signal transduction involves the intracellular phospholipase C, phospholipase A2 and protein tyrosine kinase pathways. The NK3 receptor system cooperates with the other known secretagogues in regulating guinea pig exocrine pancreatic secretion and undergoes rapid homologous desensitization.  相似文献   

17.
Addition of thrombin to human platelets results in production of lysophosphatidic acid. Such synthesis of lysophosphatidic acid can be inhibited by mepacrine, an inhibitor of the phospholipase A2 which attacks phosphatidic acid to give lysophosphatidic acid. In the present study, mepacrine was used at a concentration of 2.5-20 microM, sufficient to block aggregation and lysophosphatidic acid formation induced by 0.1 U/ml thrombin. Mepacrine, at this concentration, also blocked thrombin-induced phosphorylation of platelet myosin light chain and a 47 kDa protein, thrombin-induced secretion and thrombin-induced release of arachidonic acid from platelet phospholipids. However, mepacrine also partly inhibited the formation of phosphatidic acid in response to thrombin, consistent with some simultaneous inhibition of phospholipase C. Lysophosphatidic acid (2.5-22 microM) overcame the mepacrine block in thrombin-stimulated aggregation, protein phosphorylation and secretion without stimulating the release of arachidonic acid from platelet phospholipids or the formation of lysophosphatidic acid, and only slightly increasing phosphatidic acid formation. The results suggest that lysophosphatidic acid primarily acts distal to mepacrine inhibition of phospholipase A2 and phospholipase C and are consistent with the possibility that lysophosphatidic acid might be a mediator of part of the effects of low-dose thrombin on human platelets.  相似文献   

18.
We have examined the influence of guanine nucleotides on Ca2(+)-dependent amylase secretion from SLO permeabilized rat pancreatic acini. GTP gamma S (100 microM) stimulated Ca2+ dependent amylase release, decreasing the EC50 for Ca2+ from 1.4 to 0.8 microM. By contrast, GDP (1mM) and dGDP (1mM) inhibited the maximal Ca2(+)-dependent secretory response. Measurement of IP3 liberation showed that Ca2+ stimulation did not increase the activity of phospholipase C (PLC) postulated to be linked to a G-protein termed Gp; GDP and dGDP must therefore be exerting their inhibitory action via a GTP-binding protein distinct from the PLC-linked Gp.  相似文献   

19.
Serotonin 5-HT1A receptors have been reported to be negatively coupled to muscarinic receptor-stimulated phosphoinositide turnover in the rat hippocampus. In the present study, we have investigated further the pharmacological specificity of this negative control and attempted to elucidate the mechanism whereby 5-HT1A receptor activation inhibits the carbachol-stimulated phosphoinositide response in immature or adult rat hippocampal slices. Various 5-HT1A receptor agonists were found to inhibit carbachol (10 microM)-stimulated formation of total inositol phosphates in immature rat hippocampal slices with the following rank order of potency (IC50 values in nM): 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (11) greater than ipsapirone (20) greater than gepirone (120) greater than RU 24969 (140) greater than buspirone (560) greater than 1-(m-trifluoromethylphenyl)piperazine (1,500) greater than methysergide (5,644); selective 5-HT1B, 5-HT2, and 5-HT3 receptor agonists were inactive. The potency of the 5-HT1A receptor agonists investigated as inhibitors of the carbachol response was well correlated (r = 0.92) with their potency as inhibitors of the forskolin-stimulated adenylate cyclase in guinea pig hippocampal membranes. 8-OH-DPAT (10 microM) fully inhibited the carbachol-stimulated formation of inositol di-, tris-, and tetrakisphosphate but only partially antagonized (-40%) inositol monophosphate production. The effect of 8-OH-DPAT on carbachol-stimulated phosphoinositide turnover was not prevented by addition of tetrodotoxin (1 microM), by prior destruction of serotonergic afferents, by experimental manipulations causing an increase in cyclic AMP levels (addition of 10 microM forskolin), or by changes in membrane potential (increase in K+ concentration or addition of tetraethylammonium). Prior intrahippocampal injection of pertussis toxin also failed to alter the ability of 8-OH-DPAT to inhibit the carbachol response. Carbachol-stimulated phosphoinositide turnover in immature rat hippocampal slices was inhibited by the protein kinase C activators phorbol 12-myristate 13-acetate (10 microM) and arachidonic acid (100 microM). Moreover, the inhibitory effect of 8-OH-DPAT on the carbachol response was blocked by 10 microM quinacrine (a phospholipase A2 inhibitor) but not by BW 755C (100 microM), a cyclooxygenase and lipoxygenase inhibitor. These results collectively suggest that 5-HT1A receptor activation inhibits carbachol-stimulated phosphoinositide turnover by stimulating a phospholipase A2 coupled to 5-HT1A receptors, leading to arachidonic acid release. Arachidonic acid could in turn activate a gamma-protein kinase C with as a consequence an inhibition of carbachol-stimulated phosphoinositide turnover. This inhibition may be the consequence of a phospholipase C phosphorylation and/or a direct effect on the muscarinic receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号