首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation and biological action of inositol 1,4,5-trisphosphate   总被引:1,自引:0,他引:1  
A wide variety of receptors appear to be coupled to a phospholipase C (EC 3.1.4.3) that hydrolyzes inositol lipids. This reaction is believed to provide a link between receptor activation and cellular Ca2+ mobilization. The mechanisms by which this occurs are believed to involve inositol 1,4,5-trisphosphate (1,4,5-IP3), which signals release of Ca2+ from the endoplasmic reticulum. In rat parotid acinar cells made permeable with saponin, 1,4,5-IP3 induced rapid release of sequestered Ca2+. In intact parotid cells, the concentration-response relationship for methacholine-induced IP3 formation was similar to the relationship for muscarinic receptor occupancy by methacholine. About 10-fold lower concentrations of methacholine were sufficient to increase cytosolic [Ca2+] and to activate secretion, indicating an excess IP3 forming capacity for the muscarinic receptor. The mechanisms for the coupling of receptors to IP3 formation were studied in pancreatic acinar cells made permeable electrically. In this preparation, nonhydrolyzable derivatives of GTP potentiated agonist-induced IP3 production, which suggests the involvement of a guanine nucleotide-dependent regulatory protein. The effects of agonists and guanine nucleotides were not altered by pretreating the acinar cells with cholera or pertussis toxins, which indicated that the regulatory protein linking receptors to IP3 formation is distinct from the ones involved in the regulation of adenylate cyclase.  相似文献   

2.
In permeabilized hepatocytes, inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate and inositol 4,5-bisphosphate induced rapid release of Ca2+ from an ATP-dependent, non-mitochondrial vesicular pool, probably endoplasmic reticulum. The order of potency was inositol 1,4,5-trisphosphate greater than inositol 2,4,5-trisphosphate greater than inositol 4,5-bisphosphate. The Ca2+-releasing action of inositol 1,4,5-trisphosphate is not inhibited by high [Ca2+], nor is it dependent on [ATP] in the range of 50 microM-1.5 mM. These results suggest a role for inositol 1,4,5-trisphosphate as a second messenger in hormone-induced Ca2+ mobilisation, and that a specific receptor is involved in the Ca2+-release mechanism.  相似文献   

3.
Calcium concentration is strictly regulated in all cells. The inositol 1,4,5-trisphosphate receptor (IP(3)R), which forms a homotetrameric Ca2+ release channel in the endoplasmic reticulum, is one of the key molecules responsible for this regulation. The opening of this channel requires binding of two intracellular messengers, which are inositol 1,4,5-trisphosphate (IP(3)) and Ca2+. To promote the Ca2+-channel gating and release from the endoplasmic reticulum, IP(3) binds to the amino-terminal region of IP(3)R. Recently, the crystal structure of IP(3)R-binding core in complex with its ligand was presented [I. Bosanac, J.R. Alattia, T.K. Mai, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, M. Ikura, Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700; I. Bosanac, H. Yamazaki, T. Matsu-ura, T. Michikawa, K. Mikoshiba, M. Ikura, Crystal structure of the ligand-binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor, Mol. Cell 17 (2005) 193-203]. The space positions of residues 289-301 (segment A), 320-350 (segment B), 373-386 (segment C), and 529-545 (segment D) were not determined by the X-ray crystallography. To bridge these gaps, the computer modeling of physiologically meaningful low-energy 3D structures of the segments A-D of the inositol 1,4,5-trisphosphate receptor has been carried out by using a hierarchical conformational search algorithm combining two approaches: knowledge-based homology modeling and ab initio conformational search strategy. The structure analysis suggests a Ca2+-binding site of high affinity formed by residues 296-335, several low-energy regular secondary structure units within the segment B, and a number of hinge regions within the segments A-D, important for the receptor functioning.  相似文献   

4.
Inositol 1,4,5-trisphosphate receptor (IP3R) is a highly controlled calcium (Ca2+) channel gated by inositol 1,4,5-trisphosphate (IP3). Multiple regulators modulate IP3-triggered pore opening by binding to discrete allosteric sites within IP3R. Accordingly we have postulated that these regulators structurally control ligand gating behavior; however, no structural evidence has been available. Here we show that Ca2+, the most pivotal regulator, induced marked structural changes in the tetrameric IP3R purified from mouse cerebella. Electron microscopy of the IP3R particles revealed two distinct structures with 4-fold symmetry: a windmill structure and a square structure. Ca2+ reversibly promoted a transition from the square to the windmill with relocations of four peripheral IP3-binding domains, assigned by binding to heparin-gold. Ca2+-dependent susceptibilities to limited digestion strongly support the notion that these alterations exist. Thus, Ca2+ appeared to regulate IP3 gating activity through the rearrangement of functional domains.  相似文献   

5.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

6.
The lifetime of inositol 1,4,5-trisphosphate in single cells   总被引:4,自引:0,他引:4       下载免费PDF全文
In many eukaryotic cell types, receptor activation leads to the formation of inositol 1,4,5-trisphosphate (IP3) which causes calcium ions (Ca) to be released from internal stores. Ca release was observed in response to the muscarinic agonist carbachol by fura-2 imaging of N1E-115 neuroblastoma cells. Ca release followed receptor activation after a latency of 0.4 to 20 s. Latency was not caused by Ca feedback on IP3 receptors, but rather by IP3 accumulation to a threshold for release. The dependence of latency on carbachol dose was fitted to a model in which IP3 synthesis and degradation compete, resulting in gradual accumulation to a threshold level at which Ca release becomes regenerative. This analysis gave degradation rate constants of IP3 in single cells ranging from 0 to 0.284 s-1 (0.058 +/- 0.067 s-1 SD, 53 cells) and a mean IP3 lifetime of 9.2 +/- 2.2 s. IP3 degradation was also measured directly with biochemical methods. This gave a half life of 9 +/- 2 s. The rate of IP3 degradation sets the time frame over which IP3 accumulations are integrated as input signals. IP3 levels are also filtered over time, and on average, large-amplitude oscillations in IP3 in these cells cannot occur with period < 10 s.  相似文献   

7.
The ability of cAMP-dependent hormones to modulate the actions of Ca2(+)-mobilizing hormones was studied in single fura-2-injected guinea pig hepatocytes. In 91% of cells the cAMP-linked hormone, isoproterenol, applied alone, did not alter cytosolic Ca2+ concentration. In 78% of cells which had been pre-exposed to a low concentration of angiotensin II, isoproterenol was able to increase cytosolic Ca2+. Isoproterenol did not, however, increase inositol 1,4,5-trisphosphate or inositol tetrakisphosphate on its own, or in the presence of angiotensin II. Isoproterenol was also able to raise cytosolic Ca2+ concentration in cells microinjected with inositol 2,4,5-trisphosphate or a photoactivatable derivative of inositol 1,4,5-trisphosphate. The elevation of cytosolic Ca2+ concentration induced by isoproterenol in angiotensin II-treated cells and cells injected with caged inositol 1,4,5-trisphosphate was blocked by heparin, implying that the effect was mediated by an inositol 1,4,5-trisphosphate receptor agonist. In permeabilized hepatocytes, inositol 1,4,5-trisphosphate-induced Ca2+ release was enhanced by 8-bromo-cAMP and the catalytic subunit of cAMP-dependent kinase. Cyclic AMP-dependent kinase shifted the dose-response curve for inositol 1,4,5-trisphosphate-mediated Ca2+ release to the left by a factor of 4 and increased the total amount of Ca2+ released by 25%. These results indicate that increased sensitivity of the intracellular Ca2+ releasing organelle to inositol 1,4,5-trisphosphate is responsible for synergism between phospholipase C- and adenylylcyclase-linked hormones in the liver.  相似文献   

8.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

9.
D-myo-Inositol (1,4,5)-trisphosphate ((1,4,5)IP3)-induced Ca2+ release and subsequent Ca2+ reuptake were investigated in saponin-permeabilized rat parotid acinar cells. Following the rapid release of Ca2+ by (1,4,5)IP3, Ca2+ was resequestered. The sequential addition of submaximal concentrations of (1,4,5)IP3 resulted in sequential Ca2+ release. However, when the cells were challenged with the poorly metabolized (1,4,5)IP3 analogues, (1,4,5)IPS3 or (2,4,5)IP3, or under conditions where the metabolism of authentic (1,4,5)IP3 was reduced, Ca2+ reuptake again occurred, but sequestered Ca2+ was not released by subsequent additions of (1,4,5)IP3. The sequestered Ca2+ was, however, released by thapsigargin, an agent which inhibits active Ca2+ uptake into the (1,4,5)IP3-sensitive pool. Furthermore, the rate of thapsigargin-induced release was significantly increased in the continued presence of an (1,4,5)IP3 stimulus. Thus, Ca2+ reuptake apparently occurred into the (1,4,5)IP3- and thapsigargin-sensitive Ca2+ store and (1,4,5)IP3 continued to influence the permeability of this pool to Ca2+ during Ca2+ reuptake. In contrast to the findings in permeabilized cells, Ca2+ reuptake did not occur in the sustained presence of (1,4,5)IP3 in intact parotid cells. We conclude that cell permeabilization reveals a kinetic, and presumably structural, separation of Ca2+ uptake and release sites within the (1,4,5)IP3-regulated intracellular organelle.  相似文献   

10.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

11.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

12.
1. The activity of inositol 1,4,5-trisphosphate 3-kinase in subcellular fractions of smooth muscles of the pig coronary artery was examined. 2. Incubation of [3H]inositol 1,4,5-trisphosphate (IP3) with muscle homogenates produced more polar 3H-radioactivity (probably as inositol 1,3,4,5-tetrakisphosphate, IP4) than IP3, in the Mg2+- and ATP-dependent manner, thereby indicating the presence of IP3 3-kinase activity in homogenates of the muscle. 3. Most of the kinase activity was present in the cytosol fraction. The enzyme activity was reversibly activated by Ca2+ with a half-maximal effective concentration of 2.5 x 10(-7) M. 4. The calmodulin antagonists, W-7 and chlorpromazine inhibited the Ca2+-activated enzyme activity.  相似文献   

13.
In the absence of extracellular Ca2+, treatment of mouse lacrimal acinar cells with maximal concentrations of methacholine released Ca2+ from intracellular stores. No additional Ca2+ was mobilized by subsequent application of the intracellular Ca(2+)-ATPase inhibitor, thapsigargin, the stable inositol 1,4,5-trisphosphate ((1,4,5)IP3) analog, inositol 2,4,5-trisphosphate ((2,4,5)IP3) (by microinjection), or the Ca2+ ionophore, ionomycin. However, following prolonged activation of cells by methacholine in the presence of extracellular Ca2+, Ca2+ accumulated into a pool which was released by ionomycin but not by thapsigargin. This latter accumulation was blocked by prior microinjection of ruthenium red, indicating that it represents mitochondrial uptake. In saponin-permeabilized lacrimal cells, two Ca(2+)-sequestering pools were detected: (i) a ruthenium red-sensitive, thapsigargin-insensitive pool, presumed to be the mitochondria; and (ii) a ruthenium red-insensitive, thapsigargin-sensitive pool. Only the thapsigargin-sensitive pool accumulated Ca2+ at concentrations similar to those in unstimulated cells. The thapsigargin-sensitive Ca2+ pool was sensitive to (1,4,5)IP3; however, in contrast to findings in intact cells, only 44% of this pool was releasable by (1,4,5)IP3 or (2,4,5)IP3. These data indicate that, in intact lacrimal acinar cells, all exchangeable (ionomycin-sensitive) Ca2+ residues in a pool which responds homogeneously to agonists, (1,4,5)IP3, and thapsigargin. Prolonged elevation of [Ca2+]i results in Ca2+ accumulation into a second, ruthenium red-sensitive pool, presumably mitochondria. Finally, permeabilization of the cells fragments the non-mitochondrial pool, resulting in two pools, one sensitive and one insensitive to (1,4,5)IP3.  相似文献   

14.
Semi-synthetic inositol 1,2-cyclic 4,5-trisphosphate is 1/16th as potent as inositol 1,4,5-trisphosphate in releasing Ca2+ from intracellular stores in permeabilized mouse pancreatic acinar cells. Competitive displacement studies in mouse pancreatic microsomes show that the affinity of inositol 1,2-cyclic 4,5-trisphosphate is 1/20th of that of inositol 1,4,5-trisphosphate at the latter's receptor, indicating that the lower potency of inositol 1,2-cyclic 4,5-trisphosphate in releasing Ca2+ can be accounted for by a weaker affinity at the receptor. These results suggest that inositol 1,2-cyclic 4,5-trisphosphate is unlikely to play any significant role in Ca2+ mobilization, at least in mouse pancreatic acinar cells.  相似文献   

15.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

16.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

17.
A mathematical account is given of the processes governing the time courses of calcium ions (Ca2+), inositol 1,4,5-trisphosphate (IP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)) in single cells following the application of external agonist to metabotropic receptors. A model is constructed that incorporates the regulation of metabotropic receptor activity, the G-protein cascade and the Ca2+ dynamics in the cytosol. It is subsequently used to reproduce observations on the extent of desensitization and sequestration of the P(2)Y(2) receptor following its activation by uridine triphosphate (UTP). The theory predicts the dependence on agonist concentration of the change in the number of receptors in the membrane as well as the time course of disappearance of receptors from the plasmalemma, upon exposure to agonist. In addition, the extent of activation and desensitization of the receptor, using the calcium transients in cells initiated by exposure to agonist, is also predicted. Model predictions show the significance of membrane PIP(2) depletion and resupply on the time course of IP(3) and Ca2+ levels. Results of the modelling also reveal the importance of receptor recycling and PIP(2) resupply for maintaining Ca2+ and IP(3) levels during sustained application of agonist.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptor-deficient (IP3RKO) B-lymphocytes were used to investigate the functional relevance of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) and its cleavage by caspase-3 in apoptosis. We showed that inositol 1,4,5-trisphosphate receptor-deficient cells were largely resistant to apoptosis induced by both staurosporine (STS) and B-cell receptor (BCR) stimulation. Expression of either the wild-type IP3R1 or an N-terminal deletion mutant (Delta1-225) that lacks inositol 1,4,5-trisphosphate-induced Ca2+ release activity restored sensitivity to apoptosis and the consequent rise in free cytosolic Ca2+ concentration ([Ca2+]i). Expression of caspase-3-non-cleavable mutant receptor, however, dramatically slowed down the rate of apoptosis and prevented both Ca2+ overload and secondary necrosis. Conversely, expression of the "channel-only" domain of IP3R1, a fragment of the receptor generated by caspase-3 cleavage, strongly increased the propensity of the cells to undergo apoptosis. In agreement with these observations, caspase inhibitors impeded apoptosis and the associated rise in [Ca2+]i. Both the staurosporine- and B-cell receptor-induced apoptosis and increase in [Ca2+]i could be induced in nominally Ca2+-free and serum-free culture media, suggesting that the apoptosis-related rise in [Ca2+]i was primarily because of the release from internal stores rather than of influx through the plasma membrane. Altogether, our results suggest that IP3R1 plays a pivotal role in apoptosis and that the increase in [Ca2+]i during apoptosis is mainly the consequence of IP3R1 cleavage by caspase-3. These observations also indicate that expression of a functional IP3R1 per se is not enough to generate the significant levels of cytosolic Ca2+ needed for the rapid execution of apoptosis, but a prior activation of caspase-3 and the resulting truncation of the IP3R1 are required.  相似文献   

19.
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3.  相似文献   

20.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP3R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP3R1 was <10(-7) m and that the IP3 scarcely affected the conformational states. The structure of IP3R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP3R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP3R1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号