首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
The specificity of alkaline mesentericopeptidase (a proteinase closely related to subtilisin BPN') for the C-terminal moiety of the peptide substrate (Pi' specificity) has been studied in both hydrolysis and aminolysis reactions. N-Anthraniloylated peptide p-nitroanilides as fluorogenic substrates and amino acid or peptide derivatives as nucleophiles were used in the enzymic peptide hydrolysis and synthesis. Both hydrolysis and aminolysis kinetic data suggest a stringent specificity of mesentericopeptidase and related subtilisins to glycine as P1' residue and predilection for bulky hydrophobic P2' residues. A synergism in the action of S1' and S2'subsites has been observed. It appears that glycine flanked on both sides by hydrophobic bulky amino acid residues is the minimal amino acid sequence for an effective subtilisin catalysis.  相似文献   

2.
Yeast proteinase B inhibitor 2 (YIB2), which is composed of 74 amino acid residues, is an unusual serine protease inhibitor, since it lacks disulfide bonds. To identify its reactive site for proteases, we constructed an expression system for a synthetic YIB2 gene and then attempted to change the inhibitory properties of YIB2 by amino acid replacements. The purified wild-type YIB2 inhibited the activity of subtilisin BPN', a protein homologous to yeast proteinase B, although its binding ability was not strong, and a time-dependent decrease in its inhibitory activity was observed, demonstrating that wild-type YIB2 behaves as a temporary inhibitor when subtilisin BPN' is the target protease. Since YIB2 exhibits sequence homology to the propeptide of subtilisin, which inhibits a cognate protease using its C-terminal region, we replaced the six C-termi nal residues of YIB2 with those of the propeptide of subtilisin BPN' to make the mutant YIB2m1. This mutant exhibited markedly increased inhibitory activity toward subtilisin BPN' without a time-dependent decrease in its inhibitory activity. Replacement of only the C-terminal Asn of YIB2 by Tyr, or deletion of the C-terminal Tyr of YIB2m1, inhibited subtilisin, but the ability of these mutants to bind subtilisin and their resistance to proteolytic attack were weaker than those of YIB2m1, indicating that the C-terminal residue contributes to the interaction with the protease to a greater extent than the preceding five residues and that the resistance of YIB2 to proteolyic attack is closely related to its ability to bind a protease. These results demonstrate that YIB2 is a unique protease inhibitor that involves its C-terminal region in the interaction with the protease.  相似文献   

3.
In the course of searching for specific chromogenic substrates which might be useful in screening for protease-deficient mutants of Bacillus subtilis, we have developed a method for the synthesis of N-benzoyl-L-tyrosine thiobenzyl ester (BzTyrSBzl) in good yield. Spontaneous base hydrolysis of this thiol ester is low, but several serine proteases hydrolyze it readily. Spectrophotometric measurement of the hydrolysis of the ester in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) provides a continuous assay for chymotrypsin as sensitive as any assay reported in the literature. Serine proteases which hydrolyze this substrate may be detected in polyacrylamide disc gels by incubation in the presence of nitro blue tetrazolium. Apparent Km values of 0.02 and 7 mM and kcat values of 37 S-1 and 126 S-1 were observed for the hydrolysis of BzTyrSBzl by alpha-chymotrypsin and subtilisin BPN', respectively. Additionally, 5 mM indole was observed to behave as a strict competitive inhibitor of the alpha-chymotrypsin-catalyzed hydrolysis of BzTyrSBzl but was observed to increase the maximal rate of hydrolysis of p-nitrophenyl acetate by alpha-chymotrypsin by 30%, as previously described. These data, the published data of other workers, and results from studies with molecular models of trypsin and subtilisin BPN' are used as the basis for describing more fully a secondary hydrophobic binding pocket on alpha-chymotrypsin. The pocket is immediately adjacent to the active site serine and is tentatively suggested to be composed of 4 aliphatic side chain residues and 2 glycine residues.  相似文献   

4.
H Gr?n  M Meldal  K Breddam 《Biochemistry》1992,31(26):6011-6018
Subtilisins are serine endopeptidases with an extended binding cleft comprising at least eight binding subsites. Interestingly, subsites distant from the scissile bond play a dominant role in determining the specificity of the enzymes. The development of internally quenched fluorogenic substrates, which allow polypeptides of more than 11 amino acids to be inserted between the donor and the acceptor, has rendered it possible to perform a highly systematic mapping of the individual subsites of the active sites of subtilisin BPN' from Bacillus amyloliquefaciens and Savinase from Bacillus lentus. For each enzyme, the eight positions S5-S'3 were characterized by determination of kcat/KM values for the hydrolysis of substrates in which the amino acids were systematically varied. The results emphasize that in both subtilisin BPN' and Savinase interactions between substrate and S4 and S1 are very important. However, it is apparent that interactions between other subsites and the substrate exert a significant influence on the substrate preference. The results are rationalized on the basis of the structural data available for the two enzymes.  相似文献   

5.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

6.
A novel proteinaceous inhibitor for the metalloproteinase of Streptomyces caespitosus has been isolated from the culture supernatant of Streptomyces sp. I-355. It was named ScNPI (Streptomyces caespitosus neutral proteinase inhibitor). ScNPI exhibited strong inhibitory activity toward ScNP with a K(i) value of 1.6 nm. In addition, ScNPI was capable of inhibiting subtilisin BPN' (K(i) = 1.4 nm) (EC ). The scnpi gene consists of two regions, a signal peptide (28 amino acid residues) and a mature region (113 amino acid residues, M(r) = 11,857). The deduced amino acid sequence of scnpi showed high similarity to those of Streptomyces subtilisin inhibitor (SSI) and its homologues. The reactive site of ScNPI for inhibition of subtilisin BPN' was identified to be Met(71)-Tyr(72) bond by specific cleavage. To identify the reactive site for ScNP, Tyr(33) and Tyr(72), which are not conserved among other SSI family inhibitors but are preferable amino acid residues for ScNP, were replaced separately by Ala. The Y33A mutant retained inhibitory activity toward subtilisin BPN' but did not show any inhibitory activity toward ScNP. Moreover, a dimer of ternary complexes among ScNPI, ScNP, and subtilisin BPN' was formed to give the 2:2:2 stoichiometry. These results strongly indicate that ScNPI is a double-headed inhibitor that has individual reactive sites for ScNP and subtilisin BPN'.  相似文献   

7.
The present studies demonstrate the importance of subsite interactions in determining the cleavage specificities of kallikrein gene family proteinases. The effect of substrate amino acid residues in positions P3-P'3 on the catalytic efficiency of tissue kallikreins (rat, pig, and horse) and T-kininogenase was studied using peptidyl-pNA and intramolecularly quenched fluorogenic peptides as substrates. Kinetic analyses show the different effects of D-amino acid residues at P3, Pro at P'2, and Arg at either P'1 or P'3 on the hydrolysis of substrates by tissue kallikreins from rat and from horse or pig. T-Kininogenase was shown to differ from tissue kallikrein in its interactions at subsites S2, S'1, and S'2. As a result of these differences, Abz-FRSR-EDDnp with Arg at P'2 is a good substrate for tissue kallikreins from horse, pig, and rat but not for T-kininogenase. Abz-FRRP-EDDnp and Abz-FRAPR-EDDnp with Pro at P'2 (rat high molecular weight kininogen sequence) are susceptible to rat tissue kallikrein but not to tissue kallikreins from horse and pig. Arg at P'3 increased the susceptibility of the Arg-Ala bond to rat tissue kallikrein. These data explain the release of bradykinin by rat tissue kallikrein and of kallidin by tissue kallikreins from other animal species. Abz-FRLV-EDDnp and Abz-FRLVR-EDDnp (T-kininogen sequence) are good substrates for T-kininogenase but not for tissue kallikrein. Arg at the leaving group (at either P'1, P'2, or P'3) lowers the Km values of T-kininogenase while Val at P'2 increases its kcat values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Subtilases are members of the family of subtilisin-like serine proteases. Presently, greater than 50 subtilases are known, greater than 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and proteinase K). The mature enzymes contain up to 1775 residues, with N-terminal catalytic domains ranging from 268 to 511 residues, and signal and/or activation-peptides ranging from 27 to 280 residues. Several members contain C-terminal extensions, relative to the subtilisins, which display additional properties such as sequence repeats, processing sites and membrane anchor segments. Multiple sequence alignment of the N-terminal catalytic domains allows the definition of two main classes of subtilases. A structurally conserved framework of 191 core residues has been defined from a comparison of the four known three-dimensional structures. Eighteen of these core residues are highly conserved, nine of which are glycines. While the alpha-helix and beta-sheet secondary structure elements show considerable sequence homology, this is less so for peptide loops that connect the core secondary structure elements. These loops can vary in length by greater than 150 residues. While the core three-dimensional structure is conserved, insertions and deletions are preferentially confined to surface loops. From the known three-dimensional structures various predictions are made for the other subtilases concerning essential conserved residues, allowable amino acid substitutions, disulphide bonds, Ca(2+)-binding sites, substrate-binding site residues, ionic and aromatic interactions, proteolytically susceptible surface loops, etc. These predictions form a basis for protein engineering of members of the subtilase family, for which no three-dimensional structure is known.  相似文献   

9.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

10.
The three tetrapeptides Ac-Phe-Arg-Arg-Val-NH2 (I), Ac-Phe-Arg-Arg-Pro-NH2 (II) and Ac-Phe-Lys-Arg-Val-NH2 (III) were shown to form a most convenient substrate system for the discrimination of the serine proteinases listed below. Tissue kallikreins (porcine pancreatic, horse and human urinary) have the unique feature of cleaving well the Arg-Arg bond in peptide I (P'2 = Val), hardly splitting it in peptide II (P'2 = Pro). The kcat/Km for the hydrolysis of peptide II by horse urinary kallikrein was 600-fold lower than that for peptide I. Trypsin, plasma kallikreins (human and rat), tonin and rat urinary kallikrein were distinguished from each other by the sequence of the N-terminal fragments formed in the hydrolysis of peptides I and/or II. Differences in the cleavage sites in these peptides are explained by differences in the specificities of the proteinase subsite S2 and/or in their preference for Arg or Lys residues. The three tetrapeptides were not substrates for plasmin.  相似文献   

11.
The kinetic specificities of BPN' and Carlsberg subtilisins [EC 3.4.21.14] were examined with various nucleus-substituted derivatives of Nalpha-acetylated aromatic amino acid methyl esters for mapping their hydrophobic binding sites in comparison with that of alpha-chymotrypsin. The Carlsberg enzyme was generally much more reactive than the BPN' enzyme due to the larger kcat value. The fact that the two sutilisins hydrolyzed Ac-Tyr(PABz)-OMe, which is a derivative of tyrosine bearing a planar trans-p-phenylazobenzoyl group at the OH-function, with the smallest Km value showed that these enzymes possess a more extended aromatic binding site than has so far been demonstrated. Ac-Phe(4-NO2)-OMe was remarkable in being hydrolyzed with a particularly large kcat value (5,500 +/- 700 s-1 at pH 7.8 for Carlsberg subtilisin). Ac-Phe(4-NO2)-OMe and Ac-Tyr-OMe were distinguished by Carlsberg subtilisin in terms of kcat but not by BPN' subtilisin, suggesting that the specificity site of the former is more sensitive to a small change in size of substituent than that of the latter. Ac-Trp(NCps)-OMe and Ac-Trp(NCps)-OH were bound to the enzyme's active site but in a competitive manner. A difference in the standard free energies of binding between the two enzymes may indicate that the hydrophobic cleft of Carlsberg subtilisin is somewhat deeper and/or narrower than that of BPN' subtilisin.  相似文献   

12.
Purified rat brain cathepsin B (EC 3.4.22.1) converted prodynorphins or proenkephalins to shorter active forms by the preferential removal of C-terminal dipeptides. The substrate affinities for Met-enkephalin-Arg-Phe or -Arg-Gly-Leu were Km 46 and 117 microM, and kcat/Km ratios were 67 and 115 microM-1, min-1, respectively. Met-Enkephalin was inactivated by the same mechanism (Km-450 microM; kcat/Km = 0.12 microM-1 min-1). The comparison of cathepsin B hydrolysis for pro-opioids, a synthetic hexapeptide and its fragments, C-blocked peptides (pro-opioid amides, Met-enkephalin amide, substance P), and bovine myelin basic protein, provided information on the influence of the C-terminal residues on dipeptide release, the rates as correlated to peptide length, and the optimal arrangement of residues favoring scission at the P1-P'1 sites. The brain enzyme was stereospecific and did not act on peptides with C-terminal D-amino acid substituents. Arg hindered and Pro blocked the release of C-terminal dipeptides when in the P'2 positions. The suppression of dipeptide release by agents inhibiting endopeptidase actions such as E-64 and leupeptin, and the endogenous brain factor (cerebrocystatin) point to similar catalytic mechanisms for the exopeptidase action.  相似文献   

13.
Radisky ES  Kwan G  Karen Lu CJ  Koshland DE 《Biochemistry》2004,43(43):13648-13656
A series of mutants of chymotrypsin inhibitor 2 (CI2), at residues that interact with the inhibited enzyme subtilisin BPN', were studied to determine the relative importance of intermolecular contacts on either side of the scissile bond. Mutants were tested for inhibition of subtilisin, rates of hydrolysis by subtilisin, and ability to acylate subtilisin. Additionally, crystal structures of the mutant CI2 complexes with subtilisin were obtained. Ordered water molecules were found to play an important role in inhibitor recognition, and features of the crystal structures, in combination with biochemical data, support a transition-state stabilization role for the P(1) residue in subtilisin catalysis. Consistent with the proposed mechanism of inhibition, in which rapid acylation is followed by religation, leaving-group contacts with the enzyme were found to be more critical determinants of inhibition than acylating-group contacts in the mutants studied here.  相似文献   

14.
A new substrate for subtilisins, anthraniloyl-Ala-Ala-Phe-4-nitroanilide, has been synthesized and characterized. The peptide is a fluorogenic substrate that is intramolecularly quenched without loss of its chromogenic properties and offers a possibility for double-assay kinetic analysis. The kinetic parameters determined for subtilisin Carlsberg are Km = 0.004 mM, kcat = 104 s-1, and those for subtilisin BPN' are Km = 0.020 mM, kcat = 49 s-1. The substrate is extremely sensitive for subtilisins; the specificity constants are 10-fold higher than the corresponding values for the widely used substrate, succinyl-Ala-Ala-Pro-Phe-4-nitroanilide, and 200- to 1000-fold higher than the values obtained with succinyl-Ala-Ala-Phe-4-nitroanilide. The favorable effect of the anthraniloyl group as a P4 residue in the substrate sequence Ala-Ala-Phe-4-nitroanilide was assumed to be due to an ability to stiffen S4-P4 interactions. The mechanism proposed is hydrogen bond formation between the phenol group of tyrosine-104 and the amino group of the anthraniloyl moiety. In the spectrophotometric assay with the new substrate, the lower detection limit for subtilisin Carlsberg was 1 nM.  相似文献   

15.
The serine protease inhibitor chymotrypsin inhibitor 2 (CI2 or BSPI2) has been expressed in Escherichia coli with the pINIIIompA3 expression vector to produce 20-40 mg/L of culture. Recombinant CI2 purified from this system has been characterized and found to be identical with CI2 from barley. Slow-binding kinetics were observed for the interaction between CI2 and subtilisin BPN', with Ki = 2.9 x 10(-12) M. Analysis of slow-binding data indicates that binding of the inhibitor follows the simplest model of E + I = EI with no kinetically detectable intermediate steps or proteolytic cleavage of the reactive site bond in CI2 (Met-59-Glu-60). This, in agreement with crystallographic data, indicates that the enzyme-inhibitor adduct is the Michaelis complex, which is not chemically processed by the enzyme. Three mutant CI2 molecules with new P1 residues have also been examined with a range of serine proteases, including a mutant subtilisin. In agreement with earlier studies, we find the P1 amino acid an important determinant of specificity. CI2 Met----Lys-59 was found to be a temporary inhibitor of subtilisin BPN' but an effective inhibitor of subtilisin Carlsberg and subtilisin BPN'(Glu----Ser-156). The structural reasons for this are discussed in relation to mechanisms of inhibition of serine proteases.  相似文献   

16.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

17.
A biospecific sorbent obtained by attachment of epsilon-aminocapronyl-L-alanyl-L-alanyl-D-leucylamide to CNBr-activated Sepharose 4B has been used for affinity chromatography of various samples of subtilisin BPN', e.g. subtilisin A ("Serva"), Nagarse, A-50. Two active components were isolated from subtilisin A (Serva"), the major component corresponding to subtilisin BPN' and the minor component (SII) being a serine proteinase with low molecular weight (about 10000). The molecular weight and amino acid composition of SII as well as the kinetic parameters of its action on peptide substrates (p-nitroanilides of N-benzyloxycarbonyl-Gly-Gly-Leu, -Ala-Ala-Leu, -Gly-Gly-Phe, -Ala-Ala-Phe. The low molecular weight proteinase possesses a high affinity for the leucine residue in P1 position and alanine in P2 and P3 positions. The specificity of this proteinase differs from that of the main component.  相似文献   

18.
Multicatalytic, High-Mr Endopeptidase from Postmortem Human Brain   总被引:2,自引:0,他引:2  
The main high molecular weight (650K) multicatalytic endopeptidase has been purified from postmortem human cerebral cortex. As in other tissues and species, this enzyme is composed of several subunits of 24-31K and has three distinct catalytic activities, as shown by the hydrolysis of the fluorogenic tripeptide substrates glutaryl-Gly-Gly-Phe-7-amido-4-methylcoumarin, benzyloxycarboxyl-Gly-Gly-Arg-7-amido-4-methylcoumarin, and benzyloxycarboxyl-Leu-Leu-Glu-2-naphthylamide with hydrophobic (Phe), basic (Arg), and acidic (Glu) residues in the P1 position, respectively. These activities are distinguishable by their differential sensitivity to peptidase inhibitors. The enzyme hydrolysed neuropeptides at pH 7.4 at multiple sites with widely differing rates, ranging from 113 nmol/min/mg for substance-P, down to 2 nmol/min/mg for bradykinin. The enzyme also had proteinase activity as shown by the hydrolysis of casein. For the hydrolysis of the Tyr5-Gly6 bond in luteinizing hormone-releasing hormone, the Km was 0.95 mM and the specificity constant (kcat/Km) was 4.7 X 10(3) M-1 s-1. The bond specificity of the enzyme at neutral pH was determined by identifying the degradation products of 15 naturally occurring peptide sequences. The bonds most susceptible to hydrolysis had a hydrophobic residue at P1 and either a small (e.g., -Gly or -NH2) or hydrophobic residue at P'1. Hydrolysis of -Glu-X bonds (most notably in neuropeptide Y) and the Arg6-Arg7 bond in dynorphin peptides was also seen. Thus the three activities identified with fluorogenic substrates appear to be expressed against oligopeptides.  相似文献   

19.
The hydrolysis of 30 substituted phenyl hippurates (X-C6H4OCOCH2NHCOC6H5) by subtilisin BPN' was studied and from the results the following quantitative structure-activity relationship was derived: log 1/Km = 0.39 sigma + 0.16 B5.4 + 0.29 pi'3 + 3.58. In this expression Km is the Michaelis constant, sigma is the Hammett constant, B5.4 is the sterimol steric parameter of X in the 4-position and pi'3 is the hydrophobic parameter for the more hydrophobic of the two possible meta substituents. The other meta substitutent is assigned a pi value of 0. This mathematical model is qualitatively compared with a molecular graphics model constructed from the X-ray crystallographic coordinates of subtilisin BPN'. The results with subtilisin BPN' are compared with our earlier study of similar substrates with Carlsberg subtilisin.  相似文献   

20.
The effect of secondary-subsite interactions on the catalytic efficiency of horse urinary kallikrein was studied using as substrates oligopeptides and peptidyl-4-nitroanilides with L-Arg at P1. The known secondary specificity of tissue kallikreins for hydrophobic residues at P2 was also demonstrated for horse urinary kallikrein and a higher preference of this enzyme for L-Phe over L-Leu at P2 was evident. Interaction of subsites S3 with D-Pro and D-Phe enhanced the catalytic efficiency but tripeptidyl-4-nitroanilides with acetyl-D-Pro, L-Pro and acetyl-L-Pro at P3 were no better substrates than acetyl-dipeptidyl-4-nitroanilides. The importance of the leaving group for the catalysis was proved by higher kcat/Km values for the peptides in relation to peptidyl-4-nitroanilides containing a common acyl-chain. The low kcat value for the peptide with L-Pro at P'2 stresses the importance of a hydrogen bond between P'2 amide and the carbonyl group at S'2. One L-arginine residue at the leaving group, specially at the P'2 position, decreases the value of the apparent Km. This effect resulting of side-chain interactions with S'2, is impaired by a second L-Arg at P'1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号