首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat-shock response in Blastocladiella emersonii is dependent on the developmental stage. Cells exposed to elevated temperatures at different stages of the life cycle (sporulation, germination or growth) show a differential synthesis of heat-shock proteins (hsps). Of a total of 22 polypeptides induced, particular subsets of hsps appear in each phase, demonstrating a non-coordinate heat-shock gene expression. In contrast, heat-shock-related proteins (hsp76, hsp70, hsp39a) are spontaneously expressed at a high level during sporulation. By the criteria of two-dimensional gel electrophoresis and partial proteolysis mapping, the 70,000-Da protein, whose synthesis is induced spontaneously during sporulation, is indistinguishable from the heat-inducible hsp70. The techniques of in vitro translation, and Northern analysis using a Drosophila hsp70 probe, demonstrated that enhanced synthesis of hsp70, which occurs during heat-shock treatment and spontaneously during sporulation, is associated with an accumulation of hsp70 mRNA. These observations suggest that hsp70 gene expression is induced during sporulation.  相似文献   

2.
Actin and alpha and beta-tubulin have been identified in Blastocladiella emersonii by two-dimensional gel electrophoresis and Western blotting. The kinetics of synthesis of these proteins were compared by pulse-labeling experiments with [35S]methionine and with the accumulation of their corresponding mRNAs, translated in a cell-free system. Large increases occur in the rates of actin and alpha- and beta-tubulin biosynthesis during sporulation and there is an accumulation of the corresponding mRNAs. In parallel to the increased synthesis, these cytoskeletal proteins accumulate during the late stage of sporulation.  相似文献   

3.
The synthesis of transfer ribonucleic acid (tRNA) was examined during spore formation and spore outgrowth in Bacillus subtilis by two-dimensional polyacrylamide gel electrophoresis of in vivo 32P-labeled RNA. The two-dimensional gel system separated the B. subtilis tRNA's into 32 well-resolved spots, with the relative abundances ranging from 0.9 to 17% of the total. There were several spots (five to six) resolved which were not quantitated due to their low abundance. All of the tRNA species resolved by this gel system were synthesized at every stage examined, including vegetative growth, different stages of sporulation, and different stages of outgrowth. Quantitation of the separated tRNA's showed that in general the tRNA species were present in approximately the same relative abundances at the different developmental periods. tRNA turnover and compartmentation occurring during sporulation were examined by labeling during vegetative growth followed by the addition of excess phosphate to block further 32P incorporation. The two-dimensional gels of these samples showed the same tRNA's seen during vegetative growth, and they were in approximately the same relative abundances, indicating minimal differences in the rates of turnover of individual tRNA's. Vegetatively labeled samples, chased with excess phosphate into mature spores, also showed all of the tRNA species seen during vegetative growth, but an additional five to six minor spots were also observed. These are hypothesized to arise from the loss of 3'-terminal residues from preexisting tRNA's.  相似文献   

4.
A rapid, gentle technique is described for the isolation of nuclei from sea urchin embryos. Using this technique, we have analyzed the synthesis and accumulation of nonhistone nuclear proteins during sea urchin development by two-dimensional gel electrophoresis. Most nuclear proteins fall into one of three patterns of synthesis, which are distinguished by maximal rates of accumulation at early (prior to hatching blastula), middle (hatching blastula/gastrula), or late (prism/pluteus) stages of development. Over 60% of observed nuclear proteins undergo apparent qualitative changes in synthesis and accumulation between the 64-cell and pluteus stages. Most of these changes represent appearances of new proteins. A large number of qualitative changes occur very early in development; the period of greatest change is between the 64-cell and 200-cell stages. Over half of the proteins which first appear in the nucleus subsequent to the 64-cell stage are synthesized at stages prior to the time of their initial appearance in nuclei, but are excluded from nuclei for some time.  相似文献   

5.
G L Waring  A P Mahowald 《Cell》1979,16(3):599-607
The chorion of Drosophila melanogaster consists of proteins secreted by the follicular epithelium during late oogenesis. Petri, Wyman and Kafatos (1976) have described six major protein components of the Drosophila chorion and reported the synthesis of these proteins in vitro by mass-isolated egg chambers. We have used two-dimensional gel electrophoresis to identify approximately twenty components in highly purified chorion preparations. The synthesis patterns of these proteins in vivo were determined by isolating egg chambers of different developmental stages from flies injected with 14C amino acids. Chorion proteins constitute a large fraction of the protein synthesized by ovarian egg chambers in stages 12--14. The sizes and times of synthesis of the chorion proteins correlate closely with the production of poly(A)-containing RNAs by the follicle cells (Spradling and Mahowald, 1979).  相似文献   

6.
The two-dimensional gel electrophoresis of polypeptides synthesized in vitro from poly(A)+ RNA showed that mRNA populations change during sporulation of Physarum polycephalum. The differential hybridization of a cDNA library prepared from poly(A)+ RNA isolated from sporulating cells revealed that of 846 clones, 64 corresponded to sporulation-specific mRNAs. Further analysis demonstrated that these clones contained seven different sequences: three abundant sequences composing 3.2, 1.8, and 1.2% of the library and four other less abundant sequences. It is probable that all the major mRNAs specifically expressed in early stages of sporulation were identified. The most abundant mRNA from this group coded for a hydrophobic protein that contained a signal peptide. This protein is 47% similar to another Physarum protein, which was encoded by the most abundant plasmodium-specific mRNA. The plasmodial mRNA was degraded during sporulation and was replaced by the sporulation mRNA. These two proteins are thus encoded by members of a gene family whose expression is developmentally regulated.  相似文献   

7.
Thomas Linn  Richard Losick 《Cell》1976,8(1):103-114
The program of protein synthesis was examined during sporulation in Bacillus subtilis as an index of the control of gene expression. At various stages of growth and spore formation, cells of B. subtilis were pulse-labeled with 35S-methionine. Protein was extracted from the radioactively labeled bacteria and then subjected to high resolution one-dimensional and two-dimensional slab gel electrophoresis. We report that sporulating cells restricted or “turned off” the synthesis of certain polypeptides characteristic of the vegetative phase of growth. In certain cases, this “turn off” was prevented in a mutant (SpoOa-5NA) blocked at the first stage of spore formation. Sporulating bacteria also elaborated new polypeptide species that could not be detected in vegetatively growing cells or in cells of the asporogenous mutant SpoOa-5NA in sporulation medium. The synthesis of these sporulation-specific proteins was “turned on” in a temporally defined sequence throughout the period of spore formation. Spore coat protein, for example, was first synthesized at 4 hr after the onset of sporulation, the time at which refractile prespores appeared. Certain sporulation-specific polypeptides including the coat protein were among the most actively produced polypeptides in sporulating cells.  相似文献   

8.
In the course of study on ribonucleic acid (RNA) metabolism during sporulation in Saccharomyces cerevisiae, a new species of RNA (20S) was observed in sporulating cells by polyacrylamide gel electrophoresis. The relative content of this RNA to total RNA increased linearly early in sporulation. Labeled adenine was preferentially incorporated into 20S RNA during the early stages of sporulation. The correlation between the physiological and genetic control of sporulation and the synthesis of 20S RNA are discussed.  相似文献   

9.
10.
Summary

Proteins synthesized and accumulated during oogenesis or Pseudopotamilla occelata were analyzed by two-dimensional Polyacrylamide gel electrophoresis and fluorography. Significant changes in the patterns of synthesis and accumulation occur during oogenesis, paticularly between previtellogenic and vitellogenic stages, although many of the proteins are represented throughout the process. The changes may be generally dependent upon the variation in the gene expression affecting autosynthesis of proteins. However, appearance of proteins, which occur only at the vitellogenic stages but apparently not synthesized within the oocytes, indicates that heterosynthetic proteins are stage-specifically transported into oocytes.  相似文献   

11.
Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.  相似文献   

12.
During meiosis and spore formulation in Saccharomyces cerevisiae, changes that occur in a/alpha diploids, but not in isogenic nonsporulating a/a diploids, have been detected in cellular polypeptides. These were found by the technique of prelabeling growing cells with 35SO4(2-) and suspending them in sulfur-free sporulation medium. Under the conditions used, about 400 polypeptides were detected by two-dimensional gel electrophoresis, and 45 were altered during sporulation; of these, 21 changes were specific to a/alpha strains. These alterations were mainly due to the appearance of new polypeptides or to marked increases in the concentrations of a few polypeptides produced during vegetative growth. They could have been due either to modifications of existing polypeptides present in growing cells or to de novo synthesis of new gene products. They occurred at characteristic times during sporulation; whereas the majority of changes took place early (within the first 6 h in sporulation conditions), there were several changes characterizing the later stages of sporulation. Ten of the 35SO4(2-)-labeled polypeptides were also labeled with 32P in the presence of [32P]orthophosphate; of these, three were previously found to be sporulation specific. One of these was phosphorylated at all stages of sporulation and was labeled when [32P]orthophosphate was added either during growth of the culture of 1 h after transfer to sporulation medium. Another was labeled in the same way by adding 32P at either time, so that by 7 h in sporulation medium it was phosphorylated, but was dephosphorylated by 24 h. The third sporulation-specific peptide was labeled in extracts prepared at 7 h in sporulation medium (but not at 24 h) when [32P]-orthophosphate was added during presporulation growth, but not when [32P]-orthophosphate was added 1 h after transfer of the culture to sporulation medium. This polypeptide appeared early during sporulation; it is probably phosphorylated as it appears and is dephosphorylated at some time between 7 h and 24 h of sporulation.  相似文献   

13.
The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the alpha- and beta-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos.  相似文献   

14.
15.
The patterns of proteins synthesized during embryonic development in Drosophila melanogaster have been examined by two-dimensional gel electrophoresis. Primary cell cultures prepared from donor embryos synchronized to ± 1 hr were labeled with [35S]methionine at 5, 11.5, 14.5, and 26 hr after oviposition. Of approximately 400 to 500 proteins detected, the synthesis of about 50 is developmentally modulated. The greatest number of changes in the synthesis of stage-specific proteins occurs at 11.5 and 14.5 hr after oviposition, periods just prior to and during the times of the greatest overt morphological and biochemical changes. At 11.5 hr, 35 stage-specific proteins are synthesized, including 19 that are not present at the previous stage examined. At 14.5 hr, 34 stage-specific proteins can be detected, including 11 newly synthesized proteins. However, 12 proteins from the previous stage are no longer synthesized. At the completion of embryonic differentiation, at 26 hr, no new proteins are synthesized and the synthesis of many present in earlier stages has decreased or stopped. Comparison of patterns of embryonic proteins to those synthesized by two Drosophila continuous cell lines reveals that the majority of proteins are common to all. However, only about 40% of the embryonic stage-specific proteins are present in either cell line. In addition, there are several proteins unique to each cell line that are not observed in any of the embryonic stages.  相似文献   

16.
A monospecific polyclonal antiserum to the regulatory subunit (R) of the cAMP-dependent protein kinase of Blastocladiella emersonii has been developed by immunization with purified regulatory subunit. In Western blots, the antiserum displays high affinity and specificity for the intact R monomer of Mr = 58,000, as well as for its proteolytic products of Mr = 43,000 and Mr = 36,000, even though the antiserum has been raised against the Mr = 43,000 fragment. Western blots of cell extracts prepared at different times during the life cycle of the fungus indicate that the increase in cAMP-binding activity occurring during sporulation, as well as its decrease during germination, are associated with the accumulation of the regulatory subunit during sporulation and its disappearance during germination, respectively. Pulse labeling with [35S]methionine and immunoprecipitation indicate that the accumulation of R is due to its increased synthesis during sporulation. Two-dimensional gel electrophoresis of affinity purified cell extracts obtained after [35S]methionine pulse labeling during sporulation confirms de novo synthesis of R during this stage and furthermore shows that the protein is rapidly phosphorylated after its synthesis. In vitro translation studies using RNA isolated from different stages of the life cycle followed by immunoprecipitation have shown that the time course of expression of the mRNA coding for the regulatory subunit parallels the rate of its synthesis in vivo.  相似文献   

17.
The pattern of proteins synthesized at different stages of differentiation of the slime mold Dictyostelium discoideum was studied by two-dimensional polyacrylamide gel electrophoresis. Of the approximately 400 proteins detected during growth and/or development, synthesis of most continued throughout differentiation. Approximately 100 proteins show changes in their relative rates of synthesis. During the transition from growth to interphase, the major change observed is reduction in the relative rate of synthesis of about 8 proteins. Few further changes are noticeable until the stage of late cell aggregation, when production of about 40 new proteins begins and synthesis of about 10 is reduced considerably. Thereafter, there are few changes in the pattern of protein synthesis. Major changes in the relative rates of synthesis of a number of proteins are found during culmination, but few culmination-specific proteins are observed. In an attempt to understand the molecular basis for these changes, mRNA was isolated from different stages of differentiation and translated in an improved wheat germ cell-free system; the products were resolved on two-dimensional gels. The ratio of total translatable mRNA to total cellular RNA is constant throughout growth and differentiation. Messenger RNAs for many, but not all, developmentally regulated proteins can be identified by translation in cell-free systems. Actin is the major protein synthesized by vegetative cells and by early differentiating cells. The threefold increase in the relative rate of synthesis of actin during the first 2 hr of differentiation and the decrease which occurs thereafter can be accounted for by parallel changes in the amount of translatable actin mRNA. Most of the changes in the pattern of protein synthesis which occur during the late aggregation and culmination stages can also be accounted for by parallel increases or decreases in the amounts of translatable mRNAs encoding these proteins. It is concluded that mRNAs do not appear in a translatable form before synthesis of the homologous protein begins, and that regulation of protein synthesis during development is primarily at the levels of production or destruction of mRNA.  相似文献   

18.
A modified method of proteome comparative analysis based on preliminary removal of cell structural proteins by extraction using salt buffer and subsequent separation of extracts by two-dimensional gel electrophoresis was developed. Identification of differentially expressed proteins by mass spectrometry has revealed three proteins with noticeably increased level of synthesis in most samples of papillary thyroid tumors compared to normal tissues. An increase in ubiquitin content was found for the first time. Oncomarker search efficiencies by two-dimensional gel electrophoresis and bioinformatic search were compared.  相似文献   

19.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

20.
We are characterizing the cuticular proteins of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae) to determine their role in the function of the exoskeleton. Based on qualitative analyses of cuticles, we focused on the sodium dodecyl sulfate (SDS)-extractable proteins. A small-scale cuticle "mini-prep" procedure was devised that yields preparations virtually free of contaminating cellular material compared to hand-dissected preparations, as assessed by fluorescent microscopy using DAPI to stain nuclei. Proteins extracted in 1% SDS from various developmental stages (last larval instar, pupal, adult) were analyzed by one-dimensional denaturing polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. The cuticular protein profiles show both similarities and differences among the stages examined. The amino acid composition, glycosylation, and partial amino acid sequence of several abundant cuticular proteins indicate similarity to cuticular proteins of other insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号