首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C Virus (HCV) NS4B protein has many roles in HCV genome replication. Recently, our laboratory (Q. Han, J. Aligo, D. Manna, K. Belton, S. V. Chintapalli, Y. Hong, R. L. Patterson, D. B. van Rossum, and K. V. Konan, J. Virol. 85:6464–6479, 2011) and others (D. M. Jones, A. H. Patel, P. Targett-Adams, and J. McLauchlan, J. Virol. 83:2163–2177, 2009; D. Paul, I. Romero-Brey, J. Gouttenoire, S. Stoitsova, J. Krijnse-Locker, D. Moradpour, and R. Bartenschlager, J. Virol. 85:6963–6976, 2011) have also reported NS4B''s function in postreplication steps. Indeed, replacement of the NS4B C-terminal domain (CTD) in the HCV JFH1 (genotype 2a [G2a]) genome with sequences from Con1 (G1b) or H77 (G1a) had a negligible impact on JFH1 genome replication but attenuated virus production. Since NS4B interacts weakly with the HCV genome, we postulated that NS4B regulates the function of host or virus proteins directly involved in HCV production. In this study, we demonstrate that the integrity of the JFH1 NS4B CTD is crucial for efficient JFH1 genome encapsidation. Further, two adaptive mutations (NS4B N216S and NS5A C465S) were identified, and introduction of these mutations into the chimera rescued virus production to various levels, suggesting a genetic interaction between the NS4B and NS5A proteins. Interestingly, cells infected with chimeric viruses displayed a markedly decreased NS5A hyperphosphorylation state (NS5A p58) relative to JFH1, and the adaptive mutations differentially rescued NS5A p58 formation. However, immunofluorescence staining indicated that the decrease in NS5A p58 did not alter NS5A colocalization with the core around lipid droplets (LDs), the site of JFH1 assembly, suggesting that NS5A fails to facilitate the transfer of HCV RNA to the capsid protein on LDs. Alternatively, NS4B''s function in HCV genome encapsidation may entail more than its regulation of the NS5A phosphorylation state.  相似文献   

2.
Zhdanov, Victor M. (The D. I. Ivanovsky Institute of Virology, Moscow, USSR), Nonna B. Azadova, and Leonid V. Uryvayev. Topography and dynamics of synthesis of structural proteins of Newcastle disease virus. J. Bacteriol. 91:1902-1906. 1966.-Newcastle disease virus S and V antigens are synthesized in the cytoplasm, as revealed by the immunofluorescence method. In some experiments, S antigen was found also in the nucleoli. Actinomycin D moderately decreased the titer of infectious virus and V antigen and accelerated the time of appearance of mature virus. Proflavine sharply decreased the synthesis of both antigens and the release of mature virus.  相似文献   

3.
The spike glycoprotein (S) of the murine coronavirus mouse hepatitis virus (MHV) binds to viral murine CEACAM receptor glycoproteins and causes membrane fusion. On virions, the 180-kDa S glycoprotein of the MHV-A59 strain can be cleaved by trypsin to form the 90-kDa N-terminal receptor-binding subunit (S1) and the 90-kDa membrane-anchored fusion subunit (S2). Incubation of virions with purified, soluble CEACAM1a receptor proteins at 37 degrees C and pH 6.5 neutralizes virus infectivity (B. D. Zelus, D. R. Wessner, R. K. Williams, M. N. Pensiero, F. T. Phibbs, M. deSouza, G. S. Dveksler, and K. V. Holmes, J. Virol. 72:7237-7244, 1998). We used liposome flotation and protease sensitivity assays to investigate the mechanism of receptor-induced, temperature-dependent virus neutralization. After incubation with soluble receptor at 37 degrees C and pH 6.5, virions became hydrophobic and bound to liposomes. Receptor binding induced a profound, apparently irreversible conformational change in S on the viral envelope that allowed S2, but not S1, to be degraded by trypsin at 4 degrees C. Various murine CEACAM proteins triggered conformational changes in S on recombinant MHV strains expressing S glycoproteins of MHV-A59 or MHV-4 (MHV-JHM) with the same specificities as seen for virus neutralization and virus-receptor activities. Increased hydrophobicity of virions and conformational change in S2 of MHV-A59 could also be induced by incubating virions at pH 8 and 37 degrees C, without soluble receptor. Surprisingly, the S protein of recombinant MHV-A59 virions with a mutation, H716D, that precluded cleavage between S1 and S2 could also be triggered to undergo a conformational change at 37 degrees C by soluble receptor at neutral pH or by pH 8 alone. A novel 120-kDa subunit was formed following incubation of the receptor-triggered S(A59)H716D virions with trypsin at 4 degrees C. The data show that unlike class 1 fusion glycoproteins of other enveloped viruses, the murine coronavirus S protein can be triggered to a membrane-binding conformation at 37 degrees C either by soluble receptor at neutral pH or by alkaline pH alone, without requiring previous activation by cleavage between S1 and S2.  相似文献   

4.
目的:构建登革2型病毒非结构蛋白NS4B及其突变体Δ2K-NS4B基因的真核载体,并观察二者在哺乳动物细胞内的定位情况。方法:从登革2型病毒43株的全长cDNA克隆载体上扩增获得编码NS4B及缺失2K片段的NS4B突变体Δ2K-NS4B的基因;通过基因重组的方法分别将2段基因克隆入真核表达载体pcDNA6/V5-HisA,获得重组真核表达载体pc/D2-NS4B和pc/D2-Δ2K-NS4B;经脂质体法转染BHK-21细胞后,用RT-PCR、间接免疫荧光和Western印迹鉴定表达的蛋白。结果:重组蛋白D2-NS4B和D2-Δ2K-NS4B可在BHK-21细胞中表达,二者均定位于细胞质中,并具有较好的抗原性,能够被抗登革2型病毒NS4B的多克隆抗体特异识别。结论:重组蛋白D2-NS4B和D2-Δ2K-NS4B在哺乳动物细胞胞质中的正确表达,为深入了解NS4B在登革病毒致病过程中的生物学功能奠定了基础。  相似文献   

5.
Stone M  Jia S  Heo WD  Meyer T  Konan KV 《Journal of virology》2007,81(9):4551-4563
Like most positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its genome on the surface of rearranged membranes. We have shown previously that HCV NS4AB, but not the product NS4B, inhibits endoplasmic reticulum (ER)-to-Golgi protein traffic (K. V. Konan, T. H. Giddings, Jr., M. Ikeda, K. Li, S. M. Lemon, and K. Kirkegaard, J. Virol. 77:7843-7855). However, both NS4AB and NS4B can induce "membranous web" formation, first reported by Egger et al. (D. B Egger, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz, J. Virol. 76:5974-5984), which is also observed in HCV-infected cells (Y. Rouille, F. Helle, D. Delgrange, P. Roingeard, C. Voisset, E. Blanchard, S. Belouzard, J. McKeating, A. H. Patel, G. Maertens, T. Wakita, C. Wychowski, and J. Dubuisson, J. Virol. 80:2832-2841) and cells that bear a subgenomic NS5A-green fluorescent protein (GFP) replicon (D. Moradpour, M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum, S. P. Goff, B. D. Lindenbach, and C. M. Rice, J. Virol. 78:7400-7409). To determine the intracellular origin of the web, we examined NS4B colocalization with endogenous cellular markers in the context of the full-length or subgenomic replicon. We found that, in addition to ER markers, early endosome (EE) proteins, including Rab5, were associated with web-inducing protein NS4B. Furthermore, an immunoisolated fraction containing NS4B was found to contain both ER and EE proteins. Using fluorescence microscopy, we showed that wild-type and constitutively active Rab5 proteins were associated with NS4B. Interestingly, expression of dominant-negative Rab5 resulted in significant loss of GFP fluorescence in NS5A-GFP replicon cells. We also found that a small reduction in Rab5 protein expression decreased HCV RNA synthesis significantly. Furthermore, transfection of labeled Rab5 small interfering RNAs into NS5A-GFP replicon cells resulted in a significant decrease in GFP fluorescence. Finally, Rab5 protein was found to coimmunoprecipitate with HCV NS4B. These studies suggest that EE proteins, including Rab5, may play a role in HCV genome replication or web formation.  相似文献   

6.
The V3 region of the human immunodeficiency virus type 1 gp120 Env protein is a key domain in Env due to its role in interacting with the coreceptors CCR5 and CXCR4. We examined potential subtype-specific V3 region differences by comparing patterns of amino acid variability and probing for subtype-specific structures using 11 anti-V3 monoclonal antibodies (V3 MAbs). Differences between the subtypes in patterns of variability were most evident in the stem and turn regions of V3 (positions 9 to 24), with the two subtypes being very similar in the base region. The characteristics of the binding of V3 MAbs to Env proteins of the subtype B virus JR-FL and the subtype C virus BR025 suggested three patterns, as each group of MAbs recognized a specific conformation- or sequence-based epitope. Viruses pseudotyped with Env from JR-FL and BR025 were resistant to neutralization by the V3 MAbs, although the replacement of the Env V3 region of the SF162 virus with the JR-FL V3 created a pseudotyped virus that was hypersensitive to neutralization. A single mutation in V3 (H13R) made this chimeric Env selectively resistant to one group of V3 MAbs, consistent with the mAb binding properties. We hypothesize that there are intrinsic differences in V3 conformation between subtype B and subtype C that are localized to the stem and turn regions and that these differences have two important biological consequences: first, subtype B and subtype C V3 regions can have subtype-specific epitopes that will inherently limit antibody cross-reactivity, and second, V3 conformational differences may potentiate the frequent evolution of R5- into X4-tropic variants of subtype B but limit subtype C virus from using the same mechanism to evolve X4-tropic variants as efficiently.  相似文献   

7.
Ribonucleoprotein complexes (hnRNP) containing fragments of heterogeneous nuclear (hn)RNA and sedimenting at 35-40 S were isolated from the nuclei of HeLa S3 cells using the pH 8.0/diffusion technique. These hnRNP complexes are thought to be part of the hnRNA processing apparatus. The major protein components (core proteins) were identified by their constant ratios in native particles and in 35S hnRNP particles reconstituted in vitro. All of the core proteins, with one exception, show an increase in Mr on sodium dodecylsulfate (NaDodSO4)/polyacrylamide gels containing 8 M urea, indicative of secondary structure elements resistant to denaturation by NaDodSO4. The nine core proteins found by us are: A1 [Mr(NaDodSO4) 31 X 10(3)/Mr (urea) 38 X 10(3), apparent isoelectric point, pIapp 9.3], A2 (32.5 X 10(3)/39 X 10(3), 8.4), B1a (35.5 X 10(3)/41 X 10(3), 8.8), B1b (35.5 X 10(3)/44 X 10(3), 8.3), B1c (35.5 X 10(3)/43 X 10(3), 5.7) B2 (37 X 10(3)/42 X 10(3), 9.15), C1 (39 X 10(3)/46 X 10(3), 9.2), C2 (40.5 X 10(3)/45 X 10(3), 5.55) and C3 (38.5 X 10(3)/37 X 10(3), 4.8). Individual proteins were electroeluted from two-dimensional gels and their amino acid composition determined. Difference indices were calculated and show a group of closely related basic proteins (A1, A2, B1a, B1b, B2, C1), two related slightly acidic proteins (B1c, C2) and a distinct acidic member (C3). Two-dimensional analysis of tryptic fragments and one-dimensional separation of peptides after V8 protease treatment support these data. Peptide mapping of the proteins A1 and A2 from bovine and human cells yields identical fragments indicating a high degree of cross-species conservation. An additional protein (D4: 44 X 10(3)/55 X 10(3), greater than 9.5) was found, which preferentially associates with heavier, oligomeric hnRNP structures. Only traces of actin are present in the 35S hnRNP fraction. All core proteins are modified by charge. A large part of the charge isomers arises by phosphorylation, which has been shown by labeling with 32PO4 in vivo and with [gamma-32P]ATP in vitro. In vitro the phosphate transfer is mediated by an endogenous protein kinase associated with the 35S hnRNP complexes. The major core protein A1 exists in two conformeric forms (A1 and A1x) of which only A1x serves as phosphate acceptor in vivo.  相似文献   

8.
将含有鸡传染性支气管炎病毒 S1 基因c D N A 的重组转移质粒p S X I V V I+ X3 S1 . Holte 和p S X I V V I+ X3/4 S1 . Holte 分别与粉纹夜蛾核型多角体病毒 Tn N P V S V I- G D N A( O C C- ,gal+ ) 共转染草地夜蛾( Sf9) 细胞,经空斑纯化得到重组病毒 Tn N P V( X3) S1 . Holte O C C+ 和 Tn N P V( X3/4) S1 . Holte O C C+ 。将重组毒株分别感染 Tn5 B1 细胞,并进行 S D S P A G E 与 Westernblot 检测。结果表明, Tn N P V( X3/4) S1 . Holte O C C+ 在感染的细胞中高效表达了 S1 蛋白, S D S P A G E 凝胶薄层色谱分析结果显示,感染病毒后72 h S1 蛋白的表达量占细胞内总蛋白量的35 .8 % ,而 Tn N P V( X3) S1 . Holte O C C+ 感染的细胞内检测不出 S1 蛋白。经分析认为这一差异主要来自 S1 基因翻译起始位点及其附近的周围环境。  相似文献   

9.
Assembly of poliovirus virions requires proteolytic cleavage of the P1 capsid precursor polyprotein between two separate glutamine-glycine (QG) amino acid pairs by the viral protease 3CD. In this study, we have investigated the effects on P1 polyprotein processing and subsequent assembly of processed capsid proteins caused by substitution of the glycine residue at the individual QG cleavage sites with valine (QG-->QV). P1 cDNAs encoding the valine substitutions were created by site-directed mutagenesis and were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses which expressed the mutant P1 precursors. The recombinant vaccinia virus-expressed mutant P1 polyproteins were analyzed for proteolytic processing defects in cells coinfected with a recombinant vaccinia virus (VVP3) that expresses the poliovirus 3CD protease and for processing and assembly defects by using a trans complementation system in which P1-expressing recombinant vaccinia viruses provide capsid precursor to a defective poliovirus genome that does not express functional capsid proteins (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The QV-substituted precursors were proteolytically processed at the altered sites both in cells coinfected with VVP3 and in cells coinfected with defective poliovirus, although the kinetics of cleavage at the altered sites were slower than those of cleavage at the wild-type QG site in the precursor. Completely processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor containing a valine at the amino terminus of VP3 (VP3-G001V) were unstable and failed to assemble stable subviral structures in cells coinfected with defective poliovirus. In contrast, capsid proteins derived from the P1 precursor with a valine substitution at the amino terminus of VP1 (VP1-G001V) assembled empty capsid particles but were deficient in assembling RNA-containing virions. The assembly characteristics of the VP1-G001V mutant were compared with those of a previously described VP3-VP1 cleavage site mutant (K. Kirkegaard and B. Nelsen, J. Virol. 64:185-194, 1990) which contained a deletion of the first four amino-terminal residues of VP1 (VP1-delta 1-4) and which was reconstructed for our studies into the recombinant vaccinia virus system. Complete proteolytic processing of the VP1-delta 1-4 precursor also occurred more slowly than complete cleavage of the wild-type precursor, and formation of virions was delayed; however, capsid proteins derived from the VP1-G001V mutant assembled RNA-containing virions less efficiently than those derived from the VP1-delta 1-4 precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The crystal structure of the C24A mutant of Azotobacter vinelandii 7Fe ferredoxin (FdI) has been solved and refined at 2.0-A resolution. The structure is isomorphous to native FdI except at the site of mutation where A24 moves toward the [4Fe-4S] cluster. In spite of this inefficient packing results: three of five van der Waals contacts from the S gamma of C24 in native FdI are lost and the remaining two become longer. Consequently, the [4Fe-4S] cluster is either disordered or has a higher temperature factor (B factor) compared to the rest of the C24A FdI molecule. In addition, the entire C24A FdI structure has a higher overall B factor than native FdI. Therefore, in comparison to native FdI, the C24A mutant is isomorphous but exhibits large differences in B factor, especially at the [4Fe-4S] cluster. In contrast, the C20A FdI structure (Martin, A. G., Burgess, B. K., Stout, C. D., Cash, V. L., Dean, D. R., Jensen, G. M., and Stephens, P. J. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 598-602), which contains large structural rearrangements in the vicinity of the [4Fe-4S] cluster, exhibits essentially no change in B factor. The conformational change observed at residue 24 is similar in both C24A and C20A FdI structures. The solvent accessibility of the Fe atoms in the [3Fe-4S] and [4Fe-4S] clusters is similar in C24A, C20A, and native FdI.  相似文献   

11.
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.  相似文献   

12.
J F Newman  F Brown 《Journal of virology》1997,71(10):7657-7662
Nonstructural proteins 2C, 3CD, 3C, and 3D, and the cellular protein actin, are present in highly purified preparations of foot-and-mouth disease virus (FMDV) and poliovirus. They remain bound in variable amounts to the RNAs when the RNAs are extracted from the viruses with phenol or phenol-sodium dodecyl sulfate (SDS) and, for FMDV, when the RNA is released from the particles by a lowering of the pH below 7. RNA prepared by these methods is rapidly degraded at 37 degrees C, particularly in the presence of NH4+ ions, but hydrolysis can be prevented by antibody against Escherichia coli-expressed 3D, indicating that it is the RNA polymerase that has nuclease activity. In contrast, virion RNA from which the nonstructural proteins and actin have been removed by extraction with guanidine thiocyanate-phenol-chloroform or proteinase K-phenol is stable at 37 degrees C, although its specific infectivity is lower than that of the RNA extracted with phenol or phenol-SDS. The possible implications of the close association of replication complex proteins with the RNA in virus particles are discussed.  相似文献   

13.
Identification and cloning of the receptors for amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GaLV) have both enabled the determination of the normal function of these virus receptors in cells and initiated experimental examination of how these receptors interact with their respective viruses. GaLV and A-MuLV have distinct host ranges and use different receptors to infect human cells. It was therefore surprising to find that the human GaLV and A-MuLV receptors were not only structurally similar but performed similar cellular functions (B. O'Hara, S. V. Johann, H. P. Klinger, D. G. Blair, H. Rubinson, K. J. Dunn, P. Sass, S. M. Vitek, and T. Robbins, Cell Growth Differ. 1:119-127, 1990; M. van Zeijl, S. V. Johann, E. Closs, J. Cunningham, R. Eddy, T. B. Shows, and B. O'Hara, Proc. Natl. Acad. Sci. USA 91:1168-1172, 1994; M. P. Kavanaugh, D. G. Miller, W. Zhang, W. Law, S. L. Kozak, D. Kabat, and A. D. Miller, Proc. Natl. Acad. Sci. USA 91:7071-7075, 1994; and Z. Olah, C. Lehel, W. B. Anderson, M. V. Eiden, and C. A. Wilson, J. Biol. Chem., in press). We have now determined that the murine retrovirus 10A1 can use both the human GaLV receptor and the human A-MuLV receptor to infect cells. Furthermore, we have cloned and functionally characterized a unique form of the amphotropic receptor homolog expressed in E36 hamster cells. This receptor (EAR) can serve as both a GaLV receptor and an A-MuLV receptor, and it therefore differs from the receptors expressed in human cells, which function exclusively as either GaLV or A-MuLV receptors.  相似文献   

14.
Newly transcribed small nuclear RNAs (snRNAs) appear transiently in the cytoplasm where they assemble with snRNP core proteins (B, D, E, F, and G) stored in large pools of snRNA-free intermediates before returning permanently to the nucleus. In this report, the cytoplasmic assembly of snRNP core particles in L929 mouse fibroblasts was investigated by kinetic analysis of assembly intermediates resolved on sucrose gradients. Immunoprecipitation of gradient fractions with anti-snRNP autoimmune antisera identify pools of 6 and 20 S snRNA-free snRNP protein intermediates. The snRNP B protein has a heterodisperse sedimentation from 4 to 20 S with peaks at 6 and 20 S, and the snRNP D protein is in a bimodal distribution at 6 and 20 S. At 6 S the D protein is assembled with the E, F, and G proteins into a RNA-free core particle with a stoichiometry of D4EFG. SnRNP assembly proceeds by snRNA assembling initially with the 6 S D4EFG particle and then two copies of the B protein to form an 11-15 S SnRNP particle. The 20 S forms of the D protein in the cytoplasm are less stable than the 6 S D4EFG particle. The U1-specific A and C proteins leak from isolated nuclei and appear in the cytoplasmic fractions where they sediment from 10 to 20 S and from 4 to 8 S, respectively.  相似文献   

15.
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.  相似文献   

16.
To study the antigenic conservation of epitopes of human immunodeficiency virus type 1 (HIV-1) isolates of different clades, the abilities of human anti-HIV-1 gp120 and gp41 monoclonal antibodies (MAbs) to bind to intact HIV-1 virions were determined by a newly developed virus-binding assay. Eighteen human anti-HIV MAbs, which were directed at the V2, V3 loop, CD4-binding domain (CD4bd), C5, or gp41 regions, were used. Nine HIV-1 isolates from clades A, B, D, F, G, and H were used. Microtiter wells were coated with the MAbs, after which virus was added. Bound virus was detected after lysis by testing for p24 antigen with a noncommercial p24 enzyme-linked immunosorbent assay. The anti-V3 MAbs strongly bound the four clade B viruses and viruses from the non-B clades, although binding was weaker and more sporadic with the latter. The degrees of binding by the anti-V3 MAbs to CXCR4- and CCR5-tropic viruses were similar, suggesting that the V3 loops of these two categories of viruses are similarly exposed. The anti-C5 MAbs bound isolates of clades A, B, and D. Only weak and sporadic binding of all the viruses tested with anti-CD4bd, anti-V2, and anti-gp41 MAbs was detected. These results suggest that V3 and C5 structures are shared and well exposed on intact virions of different clades compared to the CD4bd, V2, and gp41 regions.  相似文献   

17.
Characterization of Factor V activation intermediates   总被引:5,自引:0,他引:5  
Bovine Factor V was partially activated with bovine beta-thrombin and activation intermediates, and end products were isolated either by column chromatography under nondenaturing conditions or electroelution from slab gels following electrophoresis in dodecyl sulfate or both. Electrophoresis of partially activated single-chain Factor V (Mr = 330,000) revealed intermediates designated B (Mr congruent to 205,000) and C (Mr congruent to 150,000), plus end products designated C1 (Mr congruent to 120,000), D (Mr congruent to 94,000), E (Mr congruent to 74,000), F (Mr congruent to 71,000), and G (Mr congruent to 31,000). All components except C1 were visualized readily by staining with Coomassie blue. C1, however, did not stain with this dye but was readily visualized with the Schiff-periodate or silver staining procedures. Chromatography of samples of partially activated Factor V on QAE (quaternary aminoethyl)-cellulose in Ca2+ yielded fractions consisting, respectively, of B plus C and B plus D. Both were biologically active, but the former pair required further exposure to thrombin to yield activity, whereas the latter did not. Either pair, when treated with EDTA, lost activity and could be resolved by further chromatography on QAE-cellulose into isolated components B, C, and D. Activity was recovered upon reconstitution of the pairs in Ca2+, suggesting that B plus C or B plus D comprise two subunit proteins, both subunits of which are required for biological activity. Gel electrophoretic analysis of isolated B and C, after further exposure to thrombin, indicated that B is the precursor of end products C1, E, and G, whereas C is the precursor of D and F. Conventional NH2-terminal sequence analysis and amino acid composition analysis indicated that C and D share the same NH2 terminus with Factor V and that the weighted composition of B plus C is the same as Factor V. Microsequence analysis of C1 and E indicated that C1 has the NH2-terminal sequence of intermediate B, which differs from that of end product E. These results indicate that: 1) a single cleavage of Factor V yields B and C from the COOH and NH2 termini, respectively, of the parent; 2) the pair B and C constitute a Ca2+-stabilized protein of two subunits, both of which are required for subsequent expression of biological activity; 3) the precursor-product relationship between B and C and the end products of activation are: B----C1 + E + G, and C----D + F; and 4) end product D is derived from the NH2 terminus of C, and end product C1 is derived from the NH2 terminus of B.  相似文献   

18.
Sodium dodecyl sulfate (SDS) preparations from different sources were investigated with regard to their effect on the separation of the proteins of foot and mouth disease virus (FMDV) types 01K, A2S and C-Obb as well as of Sindbis virus during gel electrophoresis in continuous and discontinuous buffer systems in the presence of 8 m urea. In the continuous system, the different SDS preparations did not markedly alter the separations of any of the virus proteins, but the distances between the FMDV protein bands were small. In the discontinuous system, the source of SDS and the kind of virus protein strongly affected the separations obtained. In this system, adequate resolutions were obtained only with A2S and C-Obb proteins in the presence of MCB or Pierce SDS preparations. An appreciable percentage of the carbon chains in these SDS preparations were found to be longer than C12. The separations of Sindbis virus proteins which occurred in the continuous buffer PAGE system using any of the SDS preparations were preferable to those which were obtained in the discontinuous system.  相似文献   

19.
Books reviews     
M olecular B iology of P lant -P athogen I nteractions (1989). Edited by B. Staskawicz, P. Ahlquist & O. Yoder.
A dvances in B iochemical E ngineering /B iotechnology . Volume 36. E nzyme S tudies . (1988). Edited by A. Fiechter.
Microbial Proteinases: H.M. Kalisz The Amidases from a Bacterium Strain: M. Maestracci, K. Bui, A. Thiery, A. Arnaud and P. Glazy
L aboratory D iagnosis of I nfectious D iseases : P rinciples and P ractice (1988).
S afety A ssurance for E nvironmental I ntroductions of G enetically -E ngineered O rganisms (1988). Edited by J. Fiksel & V.T. Covello.
C oncise E ncyclopedia of S cience and T echnology (1989). 2nd Edition. Edited by S.P. Parker.
N ew C oncepts in V iral H eart D isease : V irology , I mmunology and C linical M anagement (1988).  相似文献   

20.
The modification of disc electrophoresis technique in polyacrylamide gel with sodium dodecylsulphate (SDS) has been elaborated for synchronous isolation of some structural proteins in biologically active form and in preparative quantities from adenoviruses. Virions of SA7 adenovirus were mildly dissociated in SDS solution at 20 degrees C and structural proteins were stained by fluorescamin. After separation the zones of proteins corresponding to the native capsomeres of hexon and protein IV as well as the zones of inner proteins V and VII have been identified as fluorescent at UV-irradiation, excised and extracted by SDS solution. After the removal of SDS by protein precipitation in acetone the preparations of hexon and IV reveal the quaternary structure of native capsomers and full spectrum of antigenic and immunogenic activities of native proteins. Preparations of inner proteins V and VII possess activity in condensing adenoviral DNA. The technique is usable for preparative purification of inner polypeptide VI SA7, as well as capsomers and inner proteins of other adenoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号