首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intravenous cholecystokinin and its synthetic C-terminal octapeptide were found to cause a transient augmentation of intestinal lymph flow in the rat. Concomitant increase in lymph protein transport suggests that this reflects the increase in intestinal blood flow which is known to occur in response to these agents.  相似文献   

2.
A substantial increase in intestinal lymph flow and protein content follows fat ingestion. The effect of intraduodenal feeding of fats was studied in the rat to define the mechanisms responsible. The change appears to be largely independent of the route of fat absorption, that is, whether by the portal venous route or, alternatively, by the lymphatic route. It must be presumed that it is related to events unconnected with the route taken by absorbed fat leaving the intestinal cell.  相似文献   

3.
Diamine oxidase activity was measured in the intestinal mucosa, lymph, and in the serum of rats, to determine whether histamine, a substrate of diamine oxidase, liberates this enzyme from its mucosal storage site(s). Histamine induced a sharp rise in intestinal lymph flow, lymph protein, and lymph diamine oxidase, lasting less than 1 h after the histamine injection. The rise in lymph diamine oxidase activity was dose dependent over a narrow concentration range (0.05-0.2 mmol/kg, i.v. and 0.15-0.6 mmol/kg i.d.). It did not correlate with the dose dependent increase in lymph flow or lymph protein. A single maximal intraduodenal dose of histamine caused a 41.6-fold increase in the lymph diamine oxidase activity and a 2.4-fold increase in the serum enzyme level temporarily. A second injection of histamine, 2 h after the first, resulted in a comparatively smaller increase in the lymph enzyme. The extent of the reduction was dependent on the magnitude of the first injection. The results suggest that histamine causes a limited liberation of diamine oxidase from the intestinal mucosa. The function of this enzyme release may be a protective response by the mucosa to reduce toxic levels of free histamine, either liberated by the mucosal tissue or absorbed from the intestinal lumen.  相似文献   

4.
Purified rabbit intestinal brush border membrane vesicles transport glycyl-L-proline into an osmotically responsive intravesicular space by a Na+- independent, carrier-mediated process. With short incubation, transport occurs mostly as the intact dipeptide, followed by hydrolysis. Pretreatment of the vesicles with papain results in a 60% reduction of L-alanine transport while glycyl-L-proline transport is stimulated by 40%. Papain treatment does not change the intravesicular volume, nor does it increase membrane permeability. Dipeptide transport into papain treated vesicles remains completely Na+- independent as it is in the control vesicles. Many dipeptides inhibit glycyl-L-proline transport into papain treated vesicles both in the presence and absence of a Na+ gradient.  相似文献   

5.
Despite being banned in the U.S., organochlorine toxins such as DDT are frequently detected in human adipose tissue. The main route of exposure is through the consumption of contaminated foods and subsequent intestinal packaging of DDT into chylomicrons. These chylomicrons, which also contain dietary triacylglycerol (TG), are delivered directly to peripheral tissues without first being metabolized by the liver. The physiological process by which these compounds are delivered from chylomicrons to adipose is not well understood, but is clinically relevant since it bypasses first-pass metabolism. Based on its highly lipophilic nature, it has been assumed that DDT is transferred to peripheral tissues similar to TG; however, this has not been measured. Here, we use the lymph fistula rat to isolate chylomicrons containing both DDT and TG. These chylomicrons are the in vivo DDT delivery vehicle. Using 3T3-L1 adipocytes, we investigated the rate at which DDT transfers from chylomicrons to adipocytes, and mediators of this process. This novel approach closely approximates the in vivo DDT exposure route. We show that: 1) DDT repartitions from chylomicrons to adipocytes, 2) this transport does not require hydrolysis of TG within the chylomicron, and is stimulated by the inhibition of LPL, 3) albumin does not inhibit DDT uptake, 4) DDT dissolved in DMSO does not appropriately mimic in vivo DDT transport; and most importantly, 5) DDT uptake from chylomicrons does not mimic the uptake of TG from the same particles. Understanding these factors is important for designing interventions for human populations exposed to DDT.  相似文献   

6.
The function and precise mechanism of regulation of calbindin-D 9k in intestine is largely unknown. It is suggested that this calcium binding protein is involved in active intestinal calcium transport and that its expression is mainly mediated by 1,25-dihydroxyvitamin D3. We examined the effect of two side chain modified analogs of 1,25-dihydroxyvitamin D3 as compared to 1,25-dihydroxyvitamin D3 itself on the regulation of the calbindin-D 9k at the mRNA level and on intestinal calcium transport in the rat. delta 22-24,24-dihomo-1,25-dihydroxyvitamin D3 at a single dose of 500, 1,000, and 2,000 pmol caused greater than 7.0-fold increase in calbindin-D 9k mRNA without stimulating intestinal calcium transport. A 10,000-pmol dose of delta 22-24,24,24-trihomo-1,25-dihydroxyvitamin D3 caused a 7.6-fold increase in calbindin-D 9k mRNA without significantly increasing intestinal absorption of calcium. In contrast, 1,25-dihydroxyvitamin D3 caused a parallel increase in calbindin-D 9k mRNA and intestinal absorption of calcium. Thus, calbindin 9k is not by itself responsible for 1,25-dihydroxyvitamin D3-mediated increase in intestinal absorption of calcium.  相似文献   

7.
The maltose transport system in Escherichia coli is a member of the ATP-binding cassette superfamily of transporters that is defined by the presence of two nucleotide-binding domains or subunits and two transmembrane regions. The bacterial import systems are unique in that they require a periplasmic substrate-binding protein to stimulate the ATPase activity of the transport complex and initiate the transport process. Upon stimulation by maltose-binding protein, the intact MalFGK(2) transport complex hydrolyzes ATP with positive cooperativity, suggesting that the two nucleotide-binding MalK subunits interact to couple ATP hydrolysis to transport. The ATPase activity of the intact transport complex is inhibited by vanadate. In this study, we investigated the mechanism of inhibition by vanadate and found that incubation of the transport complex with MgATP and vanadate results in the formation of a stably inhibited species containing tightly bound ADP that persists after free vanadate and nucleotide are removed from the solution. The inhibited species does not form in the absence of MgCl(2) or of maltose-binding protein, and ADP or another nonhydrolyzable analogue does not substitute for ATP. Taken together, these data conclusively show that ATP hydrolysis must precede the formation of the vanadate-inhibited species in this system and implicate a role for a high-energy, ADP-bound intermediate in the transport cycle. Transport complexes containing a mutation in a single MalK subunit are still inhibited by vanadate during steady-state hydrolysis; however, a stably inhibited species does not form. ATP hydrolysis is therefore necessary, but not sufficient, for vanadate-induced nucleotide trapping.  相似文献   

8.
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.  相似文献   

9.
Retinyl-15-(14)C palmitate-9,10-(3)H was fed to rats in order to study hydrolysis and reesterification of this ester during digestion, absorption, transportation, and storage. After administration there was a progressive increase in the (14)C/(3)H ratio of the retinyl esters as they moved from intestinal contents to intestinal mucosa, lymph, and liver, which indicates that repeated hydrolysis and reesterification occur during the digestion and assimilation of this ester.  相似文献   

10.
The gastrointestinal tract is subject to a huge antigenic load, which is especially significant in the intestinal lumen. Being the connecting link between the organism and the external environment, the small intestine fulfils not only digestive and transport functions, but also protective ones and acts as a selective barrier for the flow of nutrients. This review considers proteases of the protective system of small intestine cells, their biochemical properties and activation mechanisms, and involvement in biochemical processes responsible for normal functioning and defense reactions of the intestine. Serine proteases of intestinal immunity are multifunctional enzymes making proteolytic attack aimed to immediately exterminate aggressive elements of the intestinal contents (allergens, toxins), to activate (inactivate) zymogens, receptors, and peptide hormones, and to hydrolyze protein precursors and other biologically active factors. Proteases of intestinal immunity control the inflammatory response, proliferation of B-lymphocytes, apoptosis, and secretory and contractive activity of the intestine; they release neurogenic factors, inactivate biologically active substances, and are involved in degradation of the intercellular matrix and in tissue remodeling.  相似文献   

11.
The 6 S, cytosolic 25-hydroxyvitamin D3 binding protein found in several rat tissues reacts with an antibody directed to the serum 25-hydroxyvitamin D3 transport protein. The 6 S “cytosolic” protein is not found in carefully washed intestinal mucosal cells isolated from chicks and rats, but can be made to appear by adding serum to the cytosol itself or to the cells prior to homogenization. On the other hand, the rat intestinal 3.2 S cytosol binding protein for 1,25-dihydroxyvitamin D3 does not react with the antibody to the serum transport protein. Thus the 6 S, 25-hydroxyvitamin D3 binding protein does not appear to be a physiologically significant substance, but rather the result of the serum 25-hydroxyvitamin D3 transport protein interacting with a cytosolic protein in vitro.  相似文献   

12.
IntroductionGLP-1 is secreted from the gut upon nutrient intake and stimulates insulin secretion. The lymph draining the intestine may transport high levels of GLP-1 to the systemic circulation before it is metabolized by DPP-4. The aims of this study were to investigate to what extent the lymphatic system might contribute to the final level(s) of systemic circulating intact GLP-1 and, in addition, whether secretory profiles in intestinal lymph might reflect lamina propria levels of GLP-1 i.e. before capillary uptake and degradation by endothelial dipeptidyl peptidase-4 (DPP-4).Method7 pigs of the YDL-strain were catheterized in the portal vein, carotid artery and cisterna chyli (lymph). Neuromedin C (NC) was infused through an ear vein catheter, before and after injection of a selective DPP-4 inhibitor (vildagliptin). Total and intact GLP-1 levels were measured throughout the 150 min experiments using specific sandwich ELISAs. DPP-4 activity was measured spectrophotometrically.ResultsConcentrations of both total and intact GLP-1 were markedly lower in lymph compared to plasma samples, and did not increase significantly in response to stimulation with NC in the absence/presence of vildagliptin. In contrast, total and intact GLP-1 levels increased significantly in the portal vein and carotid artery. DPP-4 activity was lower in lymph than plasma, and was reduced further by vildagliptin.ConclusionOur observations indicate that the lymphatic system does not transport high levels of intact GLP-1 to the systemic circulation, and that GLP-1 levels in cisternal lymph do not reflect the hormone levels in the intestinal lamina propria.  相似文献   

13.
Zinc is an essential trace element for life. Many metalloenzymes involved in the metabolism of carbohydrates, lipids, protein, and nucleic acids require zinc for their functions. The aim of this study was to characterize how zinc acts on the intestinal amino acid absorption in rabbit. Results obtained show that zinc inhibits both L-threonine accumulation in the jejunum tissue, and mucosal-to-serosal transepithelial flux of this amino acid in a dose-dependent way. The inhibition does not increase by a 10-min previous intestinal exposure of the mucosa to the heavy metal, and is not reversed by washing the intestinal tissue with saline solution or 10mM EDTA, but is appreciably reversed with 10mM dithioerythritol. Zinc seems not to modify amino acid diffusion across the intestinal epithelium. The inhibition of intestinal amino acid transport by zinc seems to be of a competitive type, and appears to be a result of impairment of the active transport that is altered by its binding to proteins (prevailing to thiol groups) of the brush-border membrane of enterocytes.  相似文献   

14.
The rate-limiting step in the transit of absorbed dietary fat across the enterocyte is the generation of the pre-chylomicron transport vesicle (PCTV) from the endoplasmic reticulum (ER). This vesicle does not require coatomer-II (COPII) proteins for budding from the ER membrane and contains vesicle-associated membrane protein 7, found in intestinal ER, which is a unique intracellular location for this SNARE protein. We wished to identify the protein(s) responsible for budding this vesicle from ER membranes in the absence of the requirement for COPII proteins. We chromatographed rat intestinal cytosol on Sephacryl S-100 and found that PCTV budding activity appeared in the low molecular weight fractions. Additional chromatographic steps produced a single major and several minor bands on SDS-PAGE. By tandem mass spectroscopy, the bands contained both liver and intestinal fatty acid-binding proteins (L- and I-FABP) as well as four other proteins. Recombinant proteins for each of the six proteins identified were tested for PCTV budding activity; only L-FABP and I-FABP (23% the activity of L-FABP) were active. The vesicles generated by L-FABP were sealed, contained apolipoproteins B48 and AIV, were of the same size as PCTV on Sepharose CL-6B, and by electron microscopy, excluded calnexin and calreticulin but did not fuse with cis-Golgi nor did L-FABP generate COPII-dependent vesicles. Gene-disrupted L-FABP mouse cytosol had 60% the activity of wild type mouse cytosol. We conclude that L-FABP can select cargo for and bud PCTV from intestinal ER membranes.  相似文献   

15.
Experiments were conducted on five chronically instrumented unanesthetized sheep to determine the effects of sustained hypoproteinemia on lung fluid balance. Plasma total protein concentration was decreased from a control value of 6.17 +/- 0.019 to 3.97 +/- 0.17 g/dl (mean +/- SE) by acute plasmapheresis and maintained at this level by chronic thoracic lymph duct drainage. We measured pulmonary arterial pressure, left atrial pressure, aortic pressure, central venous pressure, cardiac output, oncotic pressures of both plasma and lung lymph, lung lymph flow rate, and lung lymph-to-plasma ratio of total proteins and six protein fractions for both control base-line conditions and hypoproteinemia base-line conditions. Moreover, we estimated the average osmotic reflection coefficient for total proteins and the solvent drag reflection coefficients for the six protein fractions during hypoproteinemia. Hypoproteinemia caused significant decreases in lung lymph total protein concentration, lung lymph-to-plasma total protein concentration ratio, and oncotic pressures of plasma and lung lymph. There were no significant alterations in the vascular pressures, lung lymph flow rate, cardiac output, or oncotic pressure gradient. The osmotic reflection coefficient for total proteins was found to be 0.900 +/- 0.004 for hypoproteinemia conditions, which is equal to that found in a previous investigation for sheep with a normal plasma protein concentration. Our results suggest that hypoproteinemia does not alter the lung filtration coefficient nor the reflection coefficients for plasma proteins. Possible explanations for the reported increase in the lung filtration coefficient during hypoproteinemia by other investigators are also made.  相似文献   

16.
1. The absence of the effect of anoxia on the hydrolysis rate of a number of dipeptides and one tripeptide by the intact and homogenized mucosa of the small intestine in different mammals (rat, mouse and guinea pig) has been demonstrated. 2. It has been shown that in rats anoxia inhibits intestinal transport both of free glycine and glycine formed during the hydrolysis of Gly-Leu, Leu-Gly, Gly-Pro but not Pro-Gly. 3. Data obtained using the anoxic criterion suggest that the systems of membrane hydrolysis of peptides with the subsequent absorption of released amino acids presents a dominant mechanism of protein assimilation under normal physiological conditions. 4. However, they do not exclude the possibility of the transport of peptides across the apical membrane of enterocytes.  相似文献   

17.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

18.
The significance of changes in lymph flow for the extracellular distribution and transport of cellular enzymes and for the level of enzyme activities in plasma was investigated. Specimens of thoracic duct lymph were obtained from an extracorporal lymph shunt in anaesthetized, conscious resting and treadmill exercising dogs (6 km X h-1 for 1 h) The activity of 10 enzymes and of protein content in lymph and plasma were studied, as well as lymph flow, lymphatic transport, and the lymph-plasma ratio of these compounds. Lactate, pH, and blood gases were monitored in venous blood. Lymph flow of 0.80 ml X min-1 in anaesthetized dogs more than doubled (to 1.86 ml X min-1) when the animals were conscious and resting. In anaesthetized dogs lymph enzyme activity was higher only for enzymes of predominately hepatic origin, such as choline esterase (CHE) and alanine aminoferase (ALAT), and was lower for aspartate aminotransferase (ASAT) and aldolase (ALD). In conscious dogs, due to activation of the skeletal muscle "tissue pump", lymphatic transport of enzymes with rather high activity in skeletal muscle, and of protein, is significantly enhanced. Enzyme activities in plasma, however, did not differ between the groups. Lymph-plasma activity ratios higher than one were found for lactate dehydrogenase (LDH), malate dehydrogenase (MDH), ASAT, creatine kinase (CK), ALD, and phosphohexose isomerase (PHI). Exercise stimulated lymph flow up to 4.9 ml X min-1, and increased the lymphatic activities of those enzymes with a lymph-plasma ratio higher than unity, these enzymes increasing in the plasma due to the highly increased lymphatic transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Electrical stimulation of the anterior limbic area of the cortex in dogs resulted in increase of the lymph flow from the intestinal lymph duct, in enlargement of the mesenteric lymph nodes, in a fall of arterial pressure in the cranial mesenteric artery, and in decrease of the blood-stream from the homonymous vein and in the tone of the mesenteric veins. Constriction of the mesenteric veins and increase in the intestinal lymph-stream are considered to be a compensatory reaction to restore the arterial pressure to the initial level.  相似文献   

20.
Chylomicrons promote intestinal absorption of lipopolysaccharides   总被引:1,自引:0,他引:1  
Recent data suggest that dietary fat promotes intestinal absorption of lipopolysaccharides (LPS) from the gut microflora, which might contribute to various inflammatory disorders. The mechanism of fat-induced LPS absorption is unclear, however. Intestinal-epithelial cells can internalize LPS from the apical surface and transport LPS to the Golgi. The Golgi complex also contains newly formed chylomicrons, the lipoproteins that transport dietary long-chain fat through mesenteric lymph and blood. Because LPS has affinity for chylomicrons, we hypothesized that chylomicron formation promotes LPS absorption. In agreement with our hypothesis, we found that CaCo-2 cells released more cell-associated LPS after incubation with oleic-acid (OA), a long-chain fatty acid that induces chylomicron formation, than with butyric acid (BA), a short-chain fatty acid that does not induce chylomicron formation. Moreover, the effect of OA was blocked by the inhibitor of chylomicron formation, Pluronic L-81. We also observed that intragastric triolein (TO) gavage was followed by increased plasma LPS, whereas gavage with tributyrin (TB), or TO plus Pluronic L-81, was not. Most intestinally absorbed LPS was present on chylomicron remnants (CM-R) in the blood. Chylomicron formation also promoted transport of LPS through mesenteric lymph nodes (MLN) and the production of TNFalpha mRNA in the MLN. Together, our data suggest that intestinal epithelial cells may release LPS on chylomicrons from cell-associated pools. Chylomicron-associated LPS may contribute to postprandial inflammatory responses or chronic diet-induced inflammation in chylomicron target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号