首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Geographical changes in suitability in England and Wales for the cultivation of potatoes under a climate change scenario were predicted for the years 2023 and 2065 by integrating a climate database (1951-80) with climate-driven crop growth models. Initially, model outputs were produced as point values (meteorological site locations) of predicted potential yields for current crop production. The model outputs were validated statistically using actual crop yield figures collated from bibliographic analysis. The most suitable model was run again incorporating projected temperature and precipitation changes for 2023 and 2065. These outputs were then used to predict possible economic changes to farm profitability and general market trends. Results indicated that, although yields may rise, gross margins for maincrop and especially early potatoes may also rise due to shifts in production, to a fall in overall potato output and to price increases.  相似文献   

2.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

3.
The United States Great Lakes Region (USGLR) is a critical geographic area for future bioenergy production. Switchgrass (Panicum virgatum) is widely considered a carbon (C)‐neutral or C‐negative bioenergy production system, but projected increases in air temperature and precipitation due to climate change might substantially alter soil organic C (SOC) dynamics and storage in soils. This study examined long‐term SOC changes in switchgrass grown on marginal land in the USGLR under current and projected climate, predicted using a process‐based model (Systems Approach to Land‐Use Sustainability) extensively calibrated with a wealth of plant and soil measurements at nine experimental sites. Simulations indicate that these soils are likely a net C sink under switchgrass (average gain 0.87 Mg C ha?1 year?1), although substantial variation in the rate of SOC accumulation was predicted (range: 0.2–1.3 Mg C ha?1 year?1). Principal component analysis revealed that the predicted intersite variability in SOC sequestration was related in part to differences in climatic characteristics, and to a lesser extent, to heterogeneous soils. Although climate change impacts on switchgrass plant growth were predicted to be small (4%–6% decrease on average), the increased soil respiration was predicted to partially negate SOC accumulations down to 70% below historical rates in the most extreme scenarios. Increasing N fertilizer rate and decreasing harvest intensity both had modest SOC sequestration benefits under projected climate, whereas introducing genotypes better adapted to the longer growing seasons was a much more effective strategy. Best‐performing adaptation scenarios were able to offset >60% of the climate change impacts, leading to SOC sequestration 0.7 Mg C ha?1 year?1 under projected climate. On average, this was 0.3 Mg C ha?1 year?1 more C sequestered than the no adaptation baseline. These findings provide crucial knowledge needed to guide policy and operational management for maximizing SOC sequestration of future bioenergy production on marginal lands in the USGLR.  相似文献   

4.
Parthenium poses serious threat to modern crop production system and necessitate evaluating control practices for its effective management. Efficacy of different weed control practices for controlling parthenium was explored in conventional and deep tillage systems in the field conditions. Hand hoeing (20 and 35 days after emergence), S-Metolachlor (pre-emergence herbicide), sorghum straw mulch @ 5 tons ha-1 and combination of hand hoeing and sorghum straw mulch (hand hoeing at 20 and straw mulch at 35 days after emergence) were used as weed control practice. Weedy check where no weed control measure was applied was also included in this experiment for comparison. Results concluded that the all weed management treatments significantly reduced parthenium density, its fresh and dry biomass during both the years of study as compared to weedy check. Maximum sunflower achene yield was recorded in hand hoeing (20 and 35 days after emergence) in combination with deep tillage. So, mold bold plough used for the purpose of deep tillage should be encouraged for better control of parthenium and higher achene yield of sunflower crop (3293.3 kg ha-1 in 2017 and 3221.3 kg ha-1 in 2018). Moreover, is also inferred that total dose of herbicide might be reduced by using hoeing and mulching in an integrated way.  相似文献   

5.
C. E. Ohiagu  T. G. Wood 《Oecologia》1979,40(2):155-165
Summary Annual grass production in ungrazed plots was 2,731 kg ha-1, litter production was 1,619 kg ha-1 and decomposition was 1,789 kg ha-1. In grazed plots the corresponding figures were 3,157 kg ha-1, 1,440 kg ha-1, and 1,475 kg ha-1 respectively; cattle consumed 1,405 kg ha-1. Litter disappearance was greatest in the dry season: 1,226 kg ha-1 (69% of the annual total) disappearing in the 4 months of December to March in the ungrazed plots, largely due to consumption (790 kg ha-1 in December to March) by fungus-growing termites (Macrotermitinae). A positive linear relationship was found between maximum grass biomass and annual rainfall in West Africa.  相似文献   

6.
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.  相似文献   

7.
A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha?1 y?1 in grassland and ?0.84 tC ha?1 y?1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha?1 y?1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha?1 y?1 for the incorporating of straw to 1.50 tC ha?1 y?1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha?1 y?1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ?0.05 tC ha?1 y?1 change whereas the rising CO2 concentrations gave a 0.01 tC ha?1 y?1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.  相似文献   

8.
Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.  相似文献   

9.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

10.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

11.
The use of crop residues for bioenergy production needs to be carefully assessed because of the potential negative impact on the level of soil organic carbon (SOC) stocks. The impact varies with environmental conditions and crop management practices and needs to be considered when harvesting the residue for bioenergy productions. Here, we defined the sustainable harvest limits as the maximum rates that do not diminish SOC and quantified sustainable harvest limits for wheat residue across Australia's agricultural lands. We divided the study area into 9432 climate‐soil (CS) units and simulated the dynamics of SOC in a continuous wheat cropping system over 122 years (1889 – 2010) using the Agricultural Production Systems sIMulator (APSIM). We simulated management practices including six fertilization rates (0, 25, 50, 75, 100, and 200 kg N ha?1) and five residue harvest rates (0, 25, 50, 75, and 100%). We mapped the sustainable limits for each fertilization rate and assessed the effects of fertilization and three key environmental variables – initial SOC, temperature, and precipitation – on sustainable residue harvest rates. We found that, with up to 75 kg N ha?1 fertilization, up to 75% and 50% of crop residue could be sustainably harvested in south‐western and south‐eastern Australia, respectively. Higher fertilization rates achieved little further increase in sustainable residue harvest rates. Sustainable residue harvest rates were principally determined by climate and soil conditions, especially the initial SOC content and temperature. We conclude that environmental conditions and management practices should be considered to guide the harvest of crop residue for bioenergy production and thereby reduce greenhouse gas emissions during the life cycle of bioenergy production.  相似文献   

12.
In the Great Plains of North America potential evaporation exceeds precipitation during most months of the year. About 75% of the annual precipitation is received from April through September, and is accompanied by high temperatures and low relative humidity. Dryland agriculture in the Great Plains has depended on wheat production in a wheat-fallow agroecosystem (one crop year followed by a fallow year). Historically this system has used mechanical weed control practices during the fallow period, which leaves essentially no crop residue cover for protection against soil erosion and greatly accelerates soil organic carbon oxidation. This paper reviews the progress made in precipitation management in the North American Great Plains and synthesises data from an existing long-term experiment to demonstrate the management principles involved. The long-term experiment was established in 1985 to identify dryland crop and soil management systems that would maximize precipitation use efficiency (maximization of biomass production per unit of precipitation received), improve soil productivity, and increase economic return to the farmers in the West Central portion of the Great Plains. Embedded within the primary objective are sub-objectives that focus on reducing the amount of summer fallow time and reversing the soil degradation that has occurred in the wheat-fallow cropping system. The experiment consists of four variables: 1) Climate regime; 2) Soils; 3) Management systems; and 4) Time. The climate variable is based on three levels of potential evapotranspiration (ET), which are represented by three sites in eastern Colorado. All sites have annual long-term precipitation averages of approximately 400–450 mm, but vary in growing season open pan evaporation from 1600 mm in the north to 1975 mm in the south. The soil variable is represented by a catenary sequence of soils at each site. Management systems, the third variable, differ in the amount of summer fallow time and emphasize increased crop diversity. All systems are managed with no-till techniques. The fourth variable is time, and the results presented in this paper are for the first 12 yr (3 cycles of the 4-yr system). Comparing yields of cropping systems that differ in cycle length and systems that contain fallow periods, when no crop is produced, is done with a technique called “annualisation”. Yields are “annualised” by summing yields for all crops in the system and dividing by the total number of years in the system cycle. For example in a wheat-fallow system the wheat yield is divided by two because it takes 2 yr to produce one crop. Cropping system intensification increased annualised grain and crop residue yields by 75 to 100% compared to wheat-fallow. Net return to farmers increased by 25% to 45% compared to wheat-fallow. Intensified cropping systems increased soil organic C content by 875 and 1400 kg ha−1, respectively, after 12 yr compared to the wheat-fallow system. All cropping system effects were independent of climate and soil gradients, meaning that the potential for C sequestration exists in all combinations of climates and soils. Soil C gains were directly correlated to the amount of crop residue C returned to the soil. Improved macroaggregation was also associated with increases in the C content of the aggregates. Soil bulk density was reduced by 0.01g cm−3 for each 1000 kg ha−1 of residue addition over the 12-yr period, and each 1000 kg ha−1 of residue addition increased effective porosity by 0.3%. No-till practices have made it possible to increase cropping intensification beyond the traditional wheat-fallow system and in turn water-use efficiency has increased by 30% in West Central Great Plains agroecosystems. Cropping intensification has also provided positive feedbacks to soil productivity via the increased amounts of crop residue being returned to the soil.  相似文献   

13.
Fine root turnover of irrigated hedgerow intercropping in Northern Kenya   总被引:3,自引:0,他引:3  
Lehmann  Johannes  Zech  Wolfgang 《Plant and Soil》1998,198(1):19-31
Fine root turnover (<2 mm) was determined from repeated measurements of root distribution up to 120 cm soil depth by core sampling in four month intervals. Sole cropped Sorghum bicolor and Acacia saligna were compared with the agroforestry combination in an alley cropping system in semiarid Northern Kenya. Three methods for the calculation of root production were used: the max-min, balancing-transfer and compartment-flow method. The highest root biomass was found in the topsoil for all cropping systems, though trees had a deeper root system. Trees and crops had a similar amount of below-ground biomass during the vegetation period (0.3 and 0.4 Mg DM ha-1 120 cm-1), but in the agroforestry combination root biomass was more than the sum of the sole cropped systems (1.1 Mg DM ha-1 120 cm-1). The tree system showed a very static root development with little fluctuation between seasons, whereas root biomasses were very dynamic in the crop and tree + crop systems. Root production was highest in the tree + crop combination with 2.1 Mg DM ha-1 a-1, with about 50% less in sole cropped trees and crops. Root N input to soil decreased in the order tree + crop>tree>crop system with 13.5, 11.0 and 3.2 kg N ha-1 a-1, and cannot be estimated from total below-ground biomass or carbon turnover, as N is accumulated in senescing roots. Such low N input to soil stresses the need for investigating other processes of nutrient input from roots to soil. Areas of highest N input were identified in the topsoil under the tree row in the tree system. Resource utilisation and C and N input to soil were highest with a combination of annual and perennial crops.  相似文献   

14.
A 3-year field lysimeter experiment was performed to determine transformations of 15N-labeled cauliflower (Brassica oleracea) residues incorporated into lysimeter topsoil in a potato (Solanum tuberosum)/cauliflower rotation. Only the potato crop received 150 kg mineral N ha?1y?1. Cauliflower yields were high (12–13 t fresh matter ha?1), and N returned to the soil represented 51% of the aboveground plant N uptake. The 15N recovery by the potato/cauliflower rotation began at 46%, then decreased sharply to 12 and 6% for the second and third year, respectively. The cumulative 15N leaching rate was only 3%; 63% remained in the soil 3 years after incorporation. Soil N mineralization rates described by a parallel first-order kinetic model predicted 27, 7 and 6% of residual N lost annually during the first, second and third year, respectively. Thus, a potato/cauliflower rotation with moderate N fertilization optimizes N recovery of crop residues and can control leaching loss efficiently.  相似文献   

15.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

16.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

17.
Mechanical harvesting and industrial processing of fibre hemp (Cannabis sativa L.) require uniformity of stem length and weight. In 1991 and 1992 we carried out field experiments to investigate the effects of soil nitrogen level (80 and 200 kg ha-1N) and row width (12.5, 25 and 50 cm) on the variability of weight and height in hemp plants. The crops were sampled 5 times between early June and early September. Row width did not affect size variability. At final harvest coefficients of variation (CV) of both weight and height were about 1.5 times higher at 200 than at 80 kg ha-1N. Distributions of dry weight were positively skewed at all sampling dates except the first, with skewness larger at 200 than at 80 kg ha-1N. Distributions of height were negatively skewed at all sampling dates except the first at 80 kg ha-1N. At 200 kg ha-1N they changed from negative skewness during the first part of the growing season to negative kurtosis in the second part of the growing season. More suppressed plants were present at 200 than at 80 kg ha-1N. Contrary to most published results, we did not find a reduction of CV of weight nor of CV of height at the onset of self-thinning. Suppressed hemp plants can survive relatively well in the low-light environment under the canopy. Sexual dimorphism contributed to variability of height and weight, but the effects were smaller than those of nitrogen fertilization. The ratio of female to male plants was higher at 200 than at 80 kg ha-1N, as a result of a shift in sex-ratio within the population of suppressed plants. As suppressed plants were much more slender than dominating plants, self-thinning eliminated the most slender individuals in a hemp crop. However, the presence of many more heavy individuals of low slenderness at 200 than at 80 kg ha-1 N was probably the major cause of the difference in slenderness between 200 and 80 kg ha-1 N.  相似文献   

18.
Seasonal variation and depthwise distribution of dry matter in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in three stands of a subtropical humid forest of north-east India representing different stages of regrowth after tree cutting. The mean annual standing crop of fine (<2 mm in diameter) and coarse (2–15 mm diameter) roots increased gradually from 5.4 Mg ha-1 and 0.7 Mg ha-1 in 7-yr old regrowth to 9.4 Mg ha-1 and 2.8 Mg ha-1 in 16-yr old regrowth, respectively. The contribution of fine roots to the total root mass declined from 88% in 7-yr old regrowth to 77% in both 13 and 16-yr old regrowths, while that of coarse roots increased from 12 to 23%. A major portion of fine roots (59–62%) was present in 0–10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth (38–48%). In all the three stands, biomass of both fine and coarse roots followed a unimodal growth curve by showing a gradual increase from spring/pre-rainy season to autumn/post-rainy season. Biomass to necromass ratio increased from 2.5 in the 7-yr old to 3.2 in the 16-yr old stand. The annual fine root production increased from 5.9 Mg ha-1 to 7.7 Mg ha-1 and total root production from 7.6 Mg ha-1 to 14.7 Mg ha-1 from 7-yr to 16-yr old regrowth.  相似文献   

19.
We isolated a new subarctic strain Tetradesmus obliquus IPPAS S-2023 (Scenedesmaceae, Chlorophyceae) from rock baths in the White Sea. To verify its taxonomic assignment, internal transcribed spacer 2 (ITS2) of the strain was sequenced and its secondary structure was compared with predicted ITS2 secondary structures of Scenedesmaceae. The analysis of the ITS2 made it possible to assign the new strain IPPAS S-2023 to the species T. obliquus. The ultrastructural studies and energy-dispersive X-ray spectroscopy (EDX) analysis revealed a marked accumulation of vacuolar inclusions enriched in phosphorus and nitrogen (N) as well as cytoplasmiс oil bodies. Most of predicted properties of biodiesel derived from the fatty acids profile of the strain grown in the N-free medium complied with the requirements of European and American standards. The results suggest that the new subarctic strain T. obliquus IPPAS S-2023 is a promising candidate for nutrients biosequestration and for biodiesel production. In a companion paper, we assess its biomass production capability and suitability and demonstrated suitability of IPPAS S-2023 as a reference strain for studies on elevated CO2 stress effects selection of carbon dioxide-tolerant microalgae by comparison with a CO2-tolerant strain IPPAS S-2014.  相似文献   

20.
To achieve the goals of energy security and climate change mitigation in Denmark and the EU, an expansion of national production of bioenergy crops is needed. Temporal and spatial variation of yields of willow and Miscanthus is not known for Denmark because of a limited number of field trial data. The semi‐mechanistic crop model BioCro was used to simulate the production of both short‐rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990–2010. The potential average, rain‐fed mean yield was 12.1 Mg DM ha?1 yr?1 for willow and 10.2 Mg DM ha?1 yr?1 for Miscanthus. Coefficient of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland, and the year‐to‐year variation in yield was greatest on these soils. Willow was predicted to outyield Miscanthus on poor, sandy soils, whereas Miscanthus was higher yielding on clay‐rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared within a single modeling framework and providing an important new tool for decision‐making in selection of feedstocks for emerging bioenergy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号