首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants display an enhanced canal extension defect, suggesting the genes act in separate pathways to control this posteriorly directed outgrowth. Genetic analysis of putative interactors of UNC-53 or VAB-8, and cell-specific rescue experiments suggest that VAB-8, SAX-3/ROBO, SLT-1/Slit, and EVA-1 are functioning together in the outgrowth of the excretory canals, while UNC-53 appears to function in a parallel pathway with UNC-71/ADAM. The known VAB-8 interactor, the Rac/Rho GEF UNC-73/TRIO operates in both pathways, as isoform specific alleles exhibit enhancement of the phenotype in double-mutant combination with either unc-53 or vab-8. On the basis of these results, we propose a bipartite model for UNC-73/TRIO activity in excretory canal extension: a cell autonomous function that is mediated by the Rho-specific GEF domain of the UNC-73E isoform in conjunction with UNC-53 and UNC-71 and a cell nonautonomous function that is mediated by the Rac-specific GEF domain of the UNC-73B isoform, through partnering with VAB-8 and the receptors SAX-3 and EVA-1.  相似文献   

2.
Netrins promote axon outgrowth and turning through DCC/UNC-40 receptors. To characterize Netrin signaling, we generated a gain-of-function UNC-40 molecule, MYR::UNC-40. MYR::UNC-40 causes axon guidance defects, excess axon branching, and excessive axon and cell body outgrowth. These defects are suppressed by loss-of-function mutations in ced-10 (a Rac GTPase), unc-34 (an Enabled homolog), and unc-115 (a putative actin binding protein). ced-10, unc-34, and unc-115 also function in endogenous unc-40 signaling. Our results indicate that Enabled functions in axonal attraction as well as axon repulsion. UNC-40 has two conserved cytoplasmic motifs that mediate distinct downstream pathways: CED-10, UNC-115, and the UNC-40 P2 motif act in one pathway, and UNC-34 and the UNC-40 P1 motif act in the other. Thus, UNC-40 might act as a scaffold to deliver several independent signals to the actin cytoskeleton.  相似文献   

3.
The secreted molecule unc-6/netrin is important for guiding axon projections and cell migrations. unc-5 and unc-40/DCC are identified as receptors for unc-6/netrin. The downstream factors of unc-6 receptors are beginning to be elucidated, and some key factors have been identified in various organisms. Here, we showed that SRC-1 interacts with the cytosolic domain of UNC-5 through its SH2 domain. This interaction also requires the intact kinase activity of SRC-1. Downregulation of src-1 by RNA interference decreases the biological processes initiated by the UNC-5 protein and decreases UNC-5 tyrosine phosphorylation. We also generated a chimeric protein consisting of the extracellular domain and transmembrane domain of UNC-5 and an intracellular domain of SRC-1. This fusion protein is able to partially rescue mutant phenotypes caused by unc-5 but not unc-6, unc-40, and unc-34. Our results support a model in which SRC-1 is required for UNC-5-induced axon repulsion and gonad migration signaling pathways and in which localizing SRC-1 activity to UNC-5 is crucial for proper signal transduction in response to unc-6/netrin.  相似文献   

4.
5.
Neuron navigator 2 (Nav2) was first identified as an all-trans retinoic acid (atRA)-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, RAINB1) that extend neurites after exposure to atRA. It is structurally related to the Caenorhabditis elegans unc-53 gene that is required for cell migration and axonal outgrowth. To gain insight into NAV2 function, the full-length human protein was expressed in C. elegans unc-53 mutants under the control of a mechanosensory neuron promoter. Transgene expression of NAV2 rescued the defects in unc-53 mutant mechanosensory neuron elongation, indicating that Nav2 is an ortholog of unc-53. Using a loss-of-function approach, we also show that Nav2 induction is essential for atRA to induce neurite outgrowth in SH-SY5Y cells. The NAV2 protein is located both in the cell body and along the length of the growing neurites of SH-SY5Y cells in a pattern that closely mimics that of neurofilament and microtubule proteins. Transfection of Nav2 deletion constructs in Cos-1 cells reveals a region of the protein (aa 837-1065) that directs localization with the microtubule cytoskeleton. Collectively, this work supports a role for NAV2 in neurite outgrowth and axonal elongation and suggests this protein may act by facilitating interactions between microtubules and other proteins such as neurofilaments that are key players in the formation and stability of growing neurites.  相似文献   

6.
7.
The unc-5 gene is required for guiding pioneering axons and migrating cells along the body wall in C. elegans. In mutants, dorsal migrations are disrupted, but ventral and longitudinal movements are largely unaffected. The gene was tagged for molecular cloning by transposon insertions. Based on genomic and cDNA sequencing, the gene encodes UNC-5, a transmembrane protein of 919 aa. The predicted extracellular N-terminus comprises two immunoglobulin and two thrombospondin type 1 domains. Except for an SH3-like motif, the large intracellular C-terminus is novel. Mosaic analysis shows that unc-5 acts in migrating cells and pioneering neurons. We propose that UNC-5 is a transmembrane receptor expressed on the surface of motile cells and growth cones to guide dorsal movements.  相似文献   

8.
In Caenorhabditis elegans, unc-33 encodes an orthologue of the vertebrate collapsin response mediator protein (CRMP) family. We previously reported that CRMP-2 accumulated in the distal part of the growing axon of vertebrate neurons and played critical roles in axon elongation. unc-33 mutants show axonal outgrowth defects in several neurons. It has been reported that UNC-33 accumulates in neurites, whereas a missense mutation causes the mislocalization of UNC-33 from neurites to cell body, which suggests that the localization of UNC-33 in neurites is important for axonal outgrowth. However, it is unclear how UNC-33 accumulates in neurites and regulates neuronal development. In this study, to understand the regulatory mechanisms of localization of UNC-33 in neurites, we screened for the mutants that were involved in the localization of UNC-33, and identified three mutants: unc-14 (RUN domain protein), unc-51 (ULK kinase) and unc-116 (kinesin heavy chain). UNC-14 is known to associate with UNC-51. UNC-116 forms a complex with KLC-2 as Kinesin-1, a microtubule-dependent motor complex. We found that UNC-33 interacted with UNC-14 and KLC-2 in vivo. These results suggest that the UNC-14/UNC-51 complex and Kinesin-1 are involved in the localization of UNC-33 in neurites.  相似文献   

9.
Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 and anc-1 lines, which have phenotypes similar to unc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.  相似文献   

10.
11.
Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.  相似文献   

12.
The architecture of the differentiated nervous system is stable but the molecular mechanisms that are required for stabilization are unknown. We characterized the gene unc-119 in the nematode Caenorhabditis elegans and demonstrate that it is required to stabilize the differentiated structure of the nervous system. In unc-119 mutants, motor neuron commissures are excessively branched in adults. However, live imaging demonstrated that growth cone behavior during extension was fairly normal with the exception that the overall rate of migration was reduced. Later, after development was complete, secondary growth cones sprouted from existing motor neuron axons and cell bodies. These new growth cones extended supernumerary branches to the dorsal nerve cord at the same time the previously formed axons retracted. These defects could be suppressed by expressing the UNC-119 protein after embryonic development; thus demonstrating that UNC-119 is required for the maintenance of the nervous system architecture. Finally, UNC-119 is located in neuron cell bodies and axons and acts cell-autonomously to inhibit axon branching.  相似文献   

13.
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes.  相似文献   

14.
The Caenorhabditis elegans unc-60 gene encodes two functionally distinct isoforms of ADF/cofilin that are implicated in myofibril assembly. Here, we show that one of the gene products, UNC-60B, is specifically required for proper assembly of actin into myofibrils. We found that all homozygous viable unc-60 mutations resided in the unc-60B coding region, indicating that UNC-60B is responsible for the Unc-60 phenotype. Wild-type UNC-60B had F-actin binding, partial actin depolymerizing, and weak F-actin severing activities in vitro. However, mutations in UNC-60B caused various alterations in these activities. Three missense mutations resulted in weaker F-actin binding and actin depolymerizing activities and complete loss of severing activity. The r398 mutation truncated three residues from the COOH terminus and resulted in the loss of severing activity and greater actin depolymerizing activity. The s1307 mutation in a putative actin-binding helix caused greater activity in actin-depolymerizing and severing. Using a specific antibody for UNC-60B, we found varying protein levels of UNC-60B in mutant animals, and that UNC-60B was expressed in embryonic muscles. Regardless of these various molecular phenotypes, actin was not properly assembled into embryonic myofibrils in all unc-60 mutants to similar extents. We conclude that precise control of actin filament dynamics by UNC-60B is required for proper integration of actin into myofibrils.  相似文献   

15.
Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line.  相似文献   

16.
The transmembrane protein MIG-13 is a key regulator required for anterior migration of neural cells in Caenorhabditis elegans, but the signaling mechanisms involved remain unknown. Here, we isolated a suppressor mutation in the unc-71/adm-1 gene, which rescued the AVM neuron migration defect in mig-13 mutants. Genetic analyses revealed that UNC-71 at least partly acts downstream of MIG-13 and has an inhibitory effect on the anterior cell migration. The unc-71 mutation also rescued the anterior migration defect of AVM neuron in src-1 mutants. These findings suggest that MIG-13 controls anteroposterior cell migration by interacting with UNC-71 and SRC-1 in C. elegans.  相似文献   

17.
SAX-3, a receptor for Slit in C. elegans, is well characterized for its function in axonal development. However, the mechanism that regulates the membrane localization of SAX-3 and the role of SAX-3 in axon outgrowth are still elusive. Here we show that SAX-3::GFP caused ectopic axon outgrowth, which could be suppressed by the loss-of-function mutation in unc-73 (a guanine nucleotide exchange factor for small GTPases) and unc-115 (an actin binding protein), suggesting that they might act downstream of SAX-3 in axon outgrowth. We also examined genes related to axon development for their possible involvement in the subcellular localization of SAX-3. We found the unc-51 mutants appeared to accumulate SAX-3::GFP in the neuronal cell body of the posterior deirid (PDE) neuron, indicating that UNC-51 might play a role in SAX-3 membrane localization. Furthermore, we demonstrate that the N-terminal signal sequence and the transmembrane domain are essential for the subcellular localization of SAX-3 in the PDE neurons.  相似文献   

18.
19.
Hu S  Pawson T  Steven RM 《Genetics》2011,189(1):137-151
Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号