首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The kinetics of vacuolar acidification upon addition of ATP and/or pyrophosphate (PPi) has been assayed on single immobilized vacuoles by computer-aided microfluorimetry of 9-aminoacridine, and by acridine orange absorption photometry on vacuole suspensions isolated from green suspension cells of Chenopodium rubrum L. Two proton pumps at the tonoplast, an ATPase and a pyrophosphatase (PPase), operate in parallel to acidify the vacuole with different contributions adding up to a transtonoplast Δ pH of 2.6 pH units at external pH 7.2. The saturable components of proton pumping reach half maximal velocity with 0.32 ± 0.06 mM ATP and 23 ± 2.5 μM PPi, respectively. At saturating substrate concentrations, ATPase and PPase hydrolyse ATP and PPi, respectively, at a ratio of 2.3. The same ratio holds for the corresponding proton fluxes maintaining a given steady-state vacuolar pH. We conclude that both pumps operate at the same stoichiometry.  相似文献   

2.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

3.
Calcium (Ca2+) is sequestered into vacuoles of oat root cells through a H+/Ca2+ antiport system that is driven by the proton-motive force of the tonoplast H+-translocating ATPase. The antiport has been characterized directly by imposing a pH gradient in tonoplast-enriched vesicles. The pH gradient was imposed by diluting K+-loaded vesicles into a K+-free medium. Nigericin induced a K+/H+ exchange resulting in a pH gradient of 2 (acid inside). The pH gradient was capable of driving 45Ca2+ accumulation. Ca2+ uptake was tightly coupled to H+ loss as increasing Ca2+ levels progressively dissipated the steady state pH gradient. Ca2+ uptake displayed saturation kinetics with a Km(app) for Ca2+ of 10 microM. The relative affinity of the antiporter for transport of divalent cations was Ca2+ greater than Sr2+ greater than Ba2+ greater than Mg2+. La3+ or Mn2+ blocked Ca2+ uptake possibly by occupying the Ca2+-binding site. Ruthenium red (I50 = 40 microM) and N,N'-dicyclohexylcarbodiimide (I50 = 3 microM) specifically inhibited the H+/Ca2+ antiporter. When driven by pH jumps, the H+/Ca2+ exchange generated a membrane potential, interior positive, as shown by [14C]SCN accumulation. Furthermore, Ca2+ uptake was stimulated by an imposed negative membrane potential. The results support a simple model of one Ca2+ taken up per H+ lost. The exchange transport can be reversed, as a Ca2+ gradient (Ca2+in greater than Ca2+out) was effective in forming a pH gradient (acid inside). We suggest that the H+/Ca2+ exchange normally transports Ca2+ into the vacuole; however, under certain conditions, Ca2+ may be released into the cytoplasm via this antiporter.  相似文献   

4.
Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.  相似文献   

5.
The hydrolysis of ATP(4-) by the plasmalemma and tonoplast H(+)/ATPases and by the tonoplast pyrophosphatase results in the export of a proton to the apoplast or vacuole with remaining in the cytoplasm. As the enzymes that synthesize ATP(4-) require as a substrate it is proposed that protons are an essential substrate for ATP(4-) synthesis. Thus, the entry of protons to the cytoplasm by sym- and antiports will control the rate of ATP(4-) synthesis. Evidence is adduced that plants control the tension on the water column by removing water to or from the 'cellular reservoir' and guard cells by generating osmotic gradients. Schemes are presented that propose a series of metabolic changes that result in a seamless transition through the following states: (1) the import of K(+), Cl(-) and water from the apoplast to the vacuole, the K(+) being admitted to the cytoplasm via a Ca(2+)-activated K(+)-H(+) symport and the water via a Ca(2+)-activated aquaporin; (2) the continued import of K(+) and water from the apoplast to the vacuole with the concomitant export of protons and the synthesis of malate from glucose in the cytoplasm for importation into the vacuole; (3) when the tension on the water column is optimal, respiration and photosynthesis is maximal resulting in biosynthetic reactions and growth; (4) when tension on the water column increases, K(+), Cl(-) and water are exported from the vacuole to the apoplast; (5) the continued export of K(+) and water from the vacuole to the apoplast with malate for export being synthesized in the cytoplasm; the export of K(+) resulting in the acidification of the vacuole; and (6) a further increase in tension results in the deactivation of the plasmalemma H(+)/ATPase by a further increase in cytoplasmic Ca(2+) which also indirectly activates the alternative oxidase. It is suggested that mitochondrial pyruvate is partly oxidized by the TCA cycle and is partly exported to the cytoplasm where it is carboxylated to form malate(1-) for continued export to the apoplast. K(+) is transferred from the vacuole to the apoplast, the K(+) being replaced by protons from the export of mitochondrial pyruvate. The maintenance of the tonoplast electrochemical gradient is thought to result in an increase in the pH of the apoplast which may cause the hydrolysis of abscisic acid precursors with the resulting abscisic acid opening Ca(2+) channels so that the above events are reinforced. (7) This mode is proposed to continue by the metabolism of glucose to four phosphoenolpyruvate, three of which are carboxylated to malate(1-) for continued export to the apoplast with K(+) from the vacuole, the 'stress-tolerant quiescent state'.  相似文献   

6.
Trans cisternal elements of the Golgi apparatus from rat liver, identified by thiamin pyrophosphatase cytochemistry, were isolated by preparative free-flow electrophoresis and were found to undergo acidification as measured by a spectral shift in the absorbance of acridine orange. Acidification was supported not only by adenosine triphosphate (ATP) but nearly to the same degree by inorganic pyrophosphate (PPi). The proton gradients generated by either ATP or PPi were collapsed by addition of a neutral H+/K+ exchanger, nigericin, or the protonophore, carbonyl cyanide m-chlorophenylhydrazone, both at 1.5 microM. Both ATP hydrolysis and ATP-driven proton translocation as well as pyrophosphate hydrolysis and pyrophosphate-driven acidification were stimulated by chloride ions. However, ATP-dependent activities were optimum at pH 6.6, whereas pyrophosphate-dependent activities were optimum at pH 7.6. The Mg2+ optima also were different, being 0.5 mM with ATP and 5 mM with pyrophosphate. With both ATPase and especially pyrophosphatase activity, both by cytochemistry and analysis of free-flow electrophoresis fractions, hydrolysis was more evenly distributed across the Golgi apparatus stack than was either ATP- or PPi-induced inward transport of protons. Proton transport colocalized more closely with thiamin pyrophosphatase activity than did either pyrophosphatase or ATPase activity. ATP- and pyrophosphatase-dependent acidification were maximal in different electrophoretic fractions consistent with the operation of two distinct proton translocation activities, one driven by ATP and one driven by pyrophosphate.  相似文献   

7.
A method for obtaining giant protoplasts of Escherichia coli (the spheroplast incubation (SI) method: Kuroda et al. (Kuroda, T., Okuda, N., Saitoh, N., Hiyama, T., Terasaki, Y., Anazawa, H., Hirata, A., Mogi, T., Kusaka, I., Tsuchiya, T., and Yabe, I. (1998) J. Biol. Chem. 273, 16897-16904) was adapted to haploid cells of Saccharomyces cerevisiae. The yeast cell grew to become as large as 20 micrometer in diameter and to contain an oversized vacuole inside. A patch clamp technique in the whole cell/vacuole recording mode was applied for the vacuole isolated by osmotic shock. At zero membrane potential, ATP induced a strong current (as high as 100 pA; specific activity, 0.1 pA/micrometer(2)) toward the inside of the vacuole. Bafilomycin A(1,) a specific inhibitor of the V-type ATPase, strongly inhibited the activity (K(i) = 10 nM). Complete inhibition at higher concentrations indicated that any other ATP-driven transport systems were not expressed under the present incubation conditions. This current was not observed in the vacuoles prepared from a mutant that disrupted a catalytic subunit of the V-type ATPase (RH105(Deltavma1::TRP)). The K(m) value for the ATP dose response of the current was 159 microM and the H(+)/ATP ratio estimated from the reversible potential of the V-I curve was 3.5 +/- 0.3. These values agreed well with those previously estimated by measuring the V-type ATPase activity biochemically. This method can potentially be applied to any type of ion channel, ion pump, and ion transporter in S. cerevisiae, and can also be used to investigate gene functions in various organisms by using yeast cells as hosts for homologous and heterogeneous expression systems.  相似文献   

8.
Effects of pH on proton transport by vacuolar pumps from maize roots   总被引:1,自引:0,他引:1  
Protons pumps of the tonoplast may be involved in the regulation of cytosolic pH, but the effects of pH on the coupled activities of these transporters are poorly understood. The effects of pH on the activities of the H+-translocating pyrophosphatase (PPiase) and vacuolar-type H+-translocating adenosine triphosphatase (H+-ATPase) from maize ( Zea mays L. cv. FRB 73) root membranes were assessed by model that simultaneously considers proton transport by the pump and those processes that reduce net transport. The addition of either pyrophosphate or ATP to either microsomal or tonoplast membranes generated a pH gradient. The pH gradient generated in the presence of both substrates was not the sum of the gradients produced by the two substrates added separately. When membranes were separated by sucrose density gradient centrifugation, pyrophosphate (PPi)-dependent proton transport was associated with light density membranes having tonoplast H+-ATPase activity. These results indicate that some portion of the PPiase was located on the same membrane system as the tonoplast ATPase; however, tonoplast vesicles may be heterogeneous, differing slightly in the ratio of ATP- to PPi-dependent transport. Proton transport by both the PPiase and ATPase had maximal activity at pH 7.0 to 8.0 Decreases in proton transport by the ATPase at pH above the optimum were associated with increases in the processes that reduce net transport. Such an association was not observed at pH values below the optimum. These results are discussed in terms of in situ regulation of cytoplasmic pH by the two pumps.  相似文献   

9.
The brush border membrane of the insect midgut is an initial site for interaction of insecticidal proteins. We have investigated the possibility that it may contain a target site for two insecticidal fungal toxins, destruxin and efrapeptin, both of which are ATPase inhibitors. We have studied the effects of the toxins on the hydrolytic activity of a vacuolar type ATPase (V-ATPase) that we have identified from Galleria mellonella midgut columnar cell brush border membrane vesicles (BBMV) by its cation and pH dependence, sensitivity to proton pump inhibitors and K(m) (0.49 mM ATP). Efrapeptin strongly inhibited the BBMV V-ATPase but destruxin had little effect. We compared the effects of the inhibitors on known plant membrane hydrolytic enzymes, and although the vacuolar pyrophosphatase and plasma membrane ATPase were not inhibited by the toxins, the V-ATPase from mung bean, but not barley, was inhibited (50%) by 10 microM concentrations of both compounds. Different forms of the toxins were tested on the ATPases and destruxin B and efrapeptin F were the most effective. Kinetic analysis showed that the purified forms of both compounds inhibited the V-ATPases uncompetitively and modelling of data for inhibition of the BBMV V-ATPase by efrapeptin at concentrations of 0.06--12 microM yielded a K(i) of 0.125 microM.  相似文献   

10.
Mesophyll protoplasts of tobacco (Nicotiana tabacum L. cv. Xanthi) were evacuolated by centrifugation in a density gradient. Evacuolation resulted in the quantitative loss of vacuolar hydrolytic activities. The evacuolated miniprotoplasts were cultivated under different conditions, and the regeneration of the central vacuole was investigated by light and electron microscopy as well as by the determination of activities of vacuolar marker enzymes. Vacuoles and hydrolytic activities, as well as cell wall material reappeared faster when the cells were cultivated at low osmotic strength. A newly synthesized tonoplast polypeptide could be detected using a polyspecific serum raised against tonoplast proteins of barley (Hordeum vulgare L.). Both vacuolar proton pumps, the ATPase as well as the pyrophosphatase appear to be newly synthesized during the regeneration of the vacuole.Abbreviations GAP-DH NADP-dependent glyceraldehyde 3-phosphate dehydrogenase - PEP phosphoenolpyruvate - PPi pyrophosphate - PPase pyrophosphatase We thank Dr. Ernst Wehrli, Labor für Elektronenmikroskopie I, ETH Zürich, for taking micrographs. Esther Vogt assisted in the determination of the hydrolases. Bafilomycin was kindly provided by Professor Altendorf, Osnabrück FRG. This work was supported by the Swiss National Foundation grant No. 31-25196.88.  相似文献   

11.
Reconstituted transhydrogenase-ATPase vesicles obtained with purified beef heart transhydrogenase and oligomycin-sensitive ATPase were investigated with respect to the mode of interaction between the two proton pumps, with special reference to the relative contributions of the membrane potential and proton gradient using valinomycin and nigericin in the presence of potassium. In the absence of ionophores and at low ATP concentrations, below 20 microM, the ATPase generated a proton motive force which was predominantly due to a membrane potential, whereas at saturating concentrations of ATP the proton gradient was the predominant component. The ATP-dependence of the rate of the ATP-driven transhydrogenase reaction showed apparent Km values in the low and high ATP concentration range of about 3 and 56 microM, respectively, with a corresponding difference in Vmax of about 3-fold. It is concluded that the reconstituted transhydrogenase can utilize both a membrane potential and a proton gradient, separately or combined, where the relative contributions of these components depend on the activity of the ATPase. In the reconstituted vesicles, the maximally active transhydrogenase is apparently driven by an electrochemical proton gradient where the membrane potential and the proton gradient contribute one-third and two-thirds, respectively. The rate-dependent relative generation of a membrane potential and pH gradient presumably reflects the proton pump characteristics of the ATPase and/or buffering/permeability characteristics of the vesicles rather than the properties of the transhydrogenase per se. These results are discussed in relation to current models for transhydrogenase-linked proton translocation.  相似文献   

12.
The vacuo-lysosomes of Hevea brasiliensis (rubber tree) constitute a suitable model system for the study of active transport and energization at the level of the membrane of plant vacuoles. The pH gradient (delta pH) and the membrane potential (delta psi) of vacuo-lysosomes were determined by means of the weak base methylamine and the lipophilic cation tetraphenylphosphonium. The values obtained depended strongly on the experimental conditions such as medium pH or K+ concentration. Under experimental conditions, i.e., pH 7.5 outside and low K+, the delta pH amounts to about 0.9 unit, interior acid, and the delta psi to -120 mV, interior negative. The delta psi is presumably caused by the imposed K+ gradient, and the internal acidification might be a consequence of the passive proton inflow along the electric field. This explanation is sustained by the ineffectiveness of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in destroying the delta pH and delta psi, whereas higher K+ concentration decreased both. Under conditions existing in vivo, the membrane potential might be significantly lower. The presence of ATP increased the acidification of the intravesicular space by 0.5pH unit to a delta pH of up to 1.4 and shifts the membrane potential at least 60mV to a more positive value. The change of the protonmotive potential did not occur with ADP; the pH-dependence of the change was identical with the pH-dependence of a vacuo-lysosomal membrane-bound ATPase, and the effect of ATPase was prevented by the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The change of protonmotive potential difference, brought about by the ATPase, was at least 90 mV. This is evidence that a vacuo-lysosomal ATPase in plants can function as an electrogenic proton pump that transfers protons into the vacuo-lysosomal space.  相似文献   

13.
Despite the usefulness of the patch-clamp technique, its application to ion pumps and transporters in biomembranes is limited. We developed a novel method for determining the activity of a proton-pumping pyrophosphatase (H(+)-PPase) made of a single protein. We heterologously highly expressed the enzyme in Saccharomyces cerevisiae, prepared giant vacuoles from the cells, and measured a PPi-dependent electrical current of 18 pA (10.5 fA/ micro m(2)) using the patch-clamp technique in the whole-vacuole recording mode. We determined the inhibitor sensitivity and affinity for substrate (K(m), 4.6 micro M). The enzyme number in a giant vacuole (4.2 x 10(6)) and the molecular activity of the expressed H(+)-PPase (14 s(-1)) were determined. An uncoupling-type H(+)-PPase mutant, of which the 263rd glutamate residue was replaced by aspartate, and of which H(+) pump activity was not detected with the fluorescence quenching method, showed a weak current with a high K(m). The high accuracy, effectiveness and applicability of the method for exogenously expressed ion transporters were also discussed.  相似文献   

14.
Membranes prepared from Triton WR-1339-filled lysosomes (tritosomes) contained ATPase activity with a pH optimum of 5–8. These membranes also showed adenosine diphosphatase, adenosine monophosphatase, acid β-glycerol phosphatase, and acid pyrophosphatase activities. The soluble (nonmembrane) fraction of the tritosomes also contained these activities, but the properties of the soluble adenine nucleotide phosphatase activities were different from the membrane-associated enzymes. The pH optimum of tritosomal membrane ATPase changed to 5 after solubilization with Triton X-100, but ADPase and AMPase optima remained at 6–7. The pH optimum of intact membrane ATPase was also 5 when the substrate was α,β-methylene-ATP. Thus, tritosomal membrane ATPase apparently exhibits a pH 8 optimum only when acting in concert with ADPase and AMPase in intact membranes. Rates of ATP hydrolysis to adenosine were also significantly greater in intact membranes than in Triton X-100-solubilized fraction. Centrifugation of Triton X-100-solubilized tritosomal membranes in sucrose density gradients showed that ATPase and ADPase activities sedimented to one peak, and that AMPase, acid phosphatase, and pyrophosphatase were grouped in another peak. Thus, tritosomal membrane ATPase activity was not due to the latter enzymes. The resulting purification was about fourfold for ATPase. The Mr for ATPase and ADPase was estimated to be about 65,000 and for AMPase, acid phosphatase, and pyrophosphatase about 200,000.  相似文献   

15.
Abstract: The ATP-stimulated uptake of 45Ca2+ [and [3H](-)-noradrenaline ([3H]NA)] into chromaffin granules and that into mitochondria are driven by a protonic gradient ΔμH+, composed of the components ΔpH (concentration gradient of protons) and ΔΨ(electrical potential difference). The granular ATPase pumps protons into the matrix (ΔpH inside acid, ΔΨ positive), but the mitochondrial ATPase ejects protons from the matrix (ΔpH alkaline, ΔΨ negative inside). To show different driving forces of uptake, the rate of the ATP-stimulated uptake of 45Ca2+ (and [3H]NA) into chromaffin granules was compared with the rate of the ATP-stimulated uptake of 45Ca2+ into mitochondria (adrenomedullary or rat liver). In the presence of nitrate, the rate of the ATP-stimulated uptake of 45Ca2+ into chromaffin granules is higher than in the presence of acetate, because the lyotropic anion nitrate stimulates the granular ATPase and increases ΔpH (acid inside). Compared with nitrate, the rate of the ATP-stimulated uptake of 45Ca2+ into mitochondria is higher in the presence of the proton-carrying anion acetate, which, after permeation, provides protons for ejection by the ATPase. In the absence of ATP, a valinomycin-mediated potassium influx (ΔΨ inside positive) stimulates the granular uptake of [3H]NA, which has an electrogenic component, but not the granular uptake of 45Ca2+, which is electroneutral. The electrogenic uptake of 45Ca2+ into mitochondria is stimulated by a valinomycin-mediated potassium efflux (ΔΨ negative inside). The ATP-stimulated uptake of 45Ca2+ into chromaffin granules is sensitive to ruthenium red, suggesting a carrier-mediated mechanism of uptake, and it is sensitive to atractyloside, indicating the simultaneous uptake of ATP. After collapse of ΔpH by ammonia, the ATP-stimulated uptake of 45Ca2+ into chromaffin granules is abolished, but not that into mitochondria. In the presence of ammonia, the rate of the ATP-stimulated uptake of [3H]NA is very low, and an ATP-independent uptake of 45Ca2+ into chromaffin granules is observed which is similar to the ATP-independent Ca2+/Na+ exchange at the granular membrane.  相似文献   

16.
Primate cells evolved a plasma membrane to restrict the loss of important molecules. The osmotic problems that then arose were solved in one of several ways. Of major importance was the evolution of specific ion pumps, to actively extrude those salts whose inward diffusion would have led to swelling and lysis. In addition, these pumps allowed the cell to store energy in the form of ion gradients across the membrane. Thus, even in the earliest stages, the evolution of ion transport systems coincided with the development of mechanisms which catalyzes the energy transformations. It is postulated that an "ATP"-driven proton pump was one of the first ion transport systems. Such a proton pump would extrude hydrogen ions from the cell, establishing both a transmembrane pH gradient (alkaline inside) and a membrane potential (negative inside). This difference in electrochemical potential for protons (the proton-motive force) could then drive a variety of essential membrane functions, such as the active transport of ions and nutrients. A second major advance was the evolution of an ion transport system that converted light energy into a form which could be used by the cell. The modern model for this is the "purple membrane" of Halobacterium halobium, which catalyzes the extrusion of protons after the capture of light. The protonmotive force generated by such a light-driven proton pump could then power net synthesis of ATP by a reversal of the ATP-driven proton pump. A third important evolutionary step associated with ion transport was the development of a system to harness energy released by biological oxidations. Again, the solution of this problem was to conserve energy as a protonmotive force by coupling the activity of a respiratory chain to the extrusion of protons. Finally, with the development of animal cells a more careful regulation of internal and external pH was required. Thus, an ATP-driven Na+-K+ pump replaced the proton-translocating ATPase as the major ion pump found in plasma membranes.  相似文献   

17.
Starved whole cells of alkalophilic Bacillus firmus OF4 that are equilibrated at either pH 10.2, 9.5, or 8.5 synthesize ATP in response to a pH gradient that is imposed by rapid dilution of the cyanide-treated cells into buffer at pH 7.5. If a valinomycin-mediated potassium diffusion potential (positive out) is generated simultaneously with the pH gradient, then the rate of ATP synthesis and the level of synthesis achieved is much higher than upon imposition of a pH gradient alone. By contrast, imposition of a large chemical gradient of Na+, either in the presence or absence of a concomitant diffusion potential, fails to result in ATP synthesis. We conclude that this organism does not possess a sodium-motive ATPase that can be made to synthesize detectable levels of ATP by imposition of a suitably large chemical or electrochemical gradient of Na+. On the other hand, a proton-translocating ATPase is in evidence when protons are provided at very high pH, corroborating our earlier work on extremely alkalophilic bacilli. Oxidative phosphorylation must, then, be catalyzed in these organisms by a proton-translocating ATPase even though the putative bulk driving forces for such a catalyst are low under optimal growth conditions. Stable, imposed pH gradients of 1 unit, comparable to the magnitude of the total electrochemical proton gradient of growing cells, result in much lower ATP concentrations than observed in such cells. We hypothesize that ATP synthesis in growing cells utilizes protons that are made available by some localized pathway between proton pumps and the ATP synthase.  相似文献   

18.
We studied the effect of insulin and lavendustin-A (a tyrosine kinase inhibitor) on the short-circuit current (ISC) of primary cultures of fetal distal rat lung epithelium (FDLE). Insulin (2 microM) on the basolateral side of the monolayer increased ISC from 5.76 +/- 0.83 microA/cm2 (SEM, n = 7) to 7.23 +/- 1.00 microA/cm2 (p less than 0.01) under control conditions, and from 1.00 +/- 0.31 microA/cm1 to 1.53 +/- 0.34 microA/cm2 (p less than 0.05, n = 4) when amiloride (10 microM) was present on the apical side of the monolayer. Thus insulin increased both the amiloride-sensitive and insensitive ISC with the insulin-induced increase in ISC in the absence of amiloride (1.47 +/- 0.22 microA/cm2, n = 7) being significantly larger than that in the presence of 10 microM amiloride (0.53 +/- 0.14 microA/cm2, n = 4; p less than 0.025). Insulin's effect reached steady state in 1 hr. Lavendustin-A (10 microM), a tyrosine kinase inhibitor, applied to the apical side of the monolayer attenuated but did not completely block insulin's ability to increase in ISC; i.e., insulin increased ISC in lavendustin-A treated monolayers (0.63 +/- 0.09 microA/cm2, n = 5; p less than 0.0025) but the increase was significantly smaller than that without the pretreatment of lavendustin-A (p less than 0.05). In the presence of amiloride (10 microM) and lavendustin-A (10 microM) insulin was no longer able to increase ISC (change in ISC = 0.04 +/- 0.03 microA/cm2, n = 6), suggesting that lavendustin-A had blocked the insulin's effect on the amiloride-insensitive ISC. Lavendustin-A (10 microM) had no significant effect on the basal ISC in control and amiloride treated monolayers. Our studies demonstrate that insulin increases amiloride-insensitive ISC in FDLE via lavendustin-A sensitive tyrosine kinase and that insulin's action on the amiloride-sensitive ISC of FDLE is mediated through a lavendustin-A insensitive (and presumably tyrosine kinase-independent) pathway.  相似文献   

19.
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride (50 microM), indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+). Lowering pHb in the presence of oxytocin (50 mU/ml) produced a transepithelial current (3 microA.cm-2 at pHb 5.5) which was blocked by 100 microM of Hg2+, Zn2+, or Ni2+ at the basolateral side, and by DCCD (10(-5) M) or Hg2+ (100 microM) from the apical side. The net hydroosmotic water flux (JH2O) induced by oxytocin in frog bladder sacs was blocked by inhibitors of H(+)-adenosine triphosphatase (ATPase). Diethylstilbestrol (DES 10(-5) M), oligomycin (10(-8) M), and DCCD (10(-5) M) prevented JH2O when present in the lumen. These effects cannot be attributed to inhibition of metabolism since cyanide (10(-4) M), or 2-deoxyglucose (10(-3) M) had no effect on JH2O.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A low-density fraction of pea ( Pisum sativum L. cv. Alaska) stem microsomes, obtained from a discontinuous sucrose gradient, possessed an H+-ATPase able to generate a proton gradient and an electrical potential. The proton pumping was insensitive to monovalent cations, to vanadate and oligomycin, required a permeant anion and was inhibited by nitrate, N, N'-dicyclohexylcarbodiimide and diethylstilbestrol. The H+-ATPase had a pH optimum around 6.0–6.5 and was saturable with respect to the substrate Tris-ATP (Km≅ 0.4 m M ). Ca2+ (0.05–1 m M ) induced a dissipation of the ATP-generated δpH without affecting ATPase activity. At physiological concentrations (1–5 m M ), nitrate caused an initial slight increase of the ATP-generated proton gradient followed by a complete dissipation after 2–3 min. The dissipating effect was not caused by inhibition of ATPase activity, since ATP prevented the nitrate-induced collapse of δpH. On the other hand, ATPase activity, evaluated as release of Pi, was not inhibited by concentrations lower than 20 m M KNO3. These results indicate that nitrate entered the vesicles in response to an electrical potential and then could exit in symport with protons, while Ca2+ entered in exchange for protons (antiport).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号