共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen J Huang X Halicka D Brodsky S Avram A Eskander J Bloomgarden NA Darzynkiewicz Z Goligorsky MS 《American journal of physiology. Heart and circulatory physiology》2006,290(4):H1575-H1586
We have previously found that nonenzymatically glycated collagen I (GC), mimicking diabetic microenvironment, can induce senescent phenotype in early passage human umbilical vein endothelial cells (HUVECs). In the present study, we explored the functional involvement of cell cycle checkpoint pathways in initiating GC-induced premature endothelial cell senescence. When compared with native collagen, early passage HUVECs showed increased p53, p21(CIP1) (p21), and p16(INK4a) (p16) mRNA expression after exposure to GC. Twenty-four hours after transfection of p16, p21, and p53-enhanced green fluorescent protein (EGFP) recombinant plasmids, HUVECs entered G(1)-phase cell cycle arrest. By days 3 and 5, HUVECs transfected with p16-EGFP showed an increased proportion of senescent cells, and this increase was more prominent in the GFP-positive cell population, which exhibited 68% of senescent cells. Transfection of p21 also induced senescence but only by day 5. Cotransfection of p16 and p21 showed no additive effect. Transfection of p21 or p53 induced apoptosis in HUVECs. Next, we suppressed endogenous p53, p21, p16, or retinoblastoma (Rb) gene expression through small interference RNA strategy and investigated their influence in p16- and p21-initiated endothelial cell senescence. Analysis indicated that suppression of p53 expression can abolish senescence induced by p16 overexpression. Paradoxically, this effect was not observed when p21 was suppressed. On the other hand, suppression of Rb eliminated senescence initiated by either p16 or p21 overexpression. In summary, the p53/p21 pathway is mainly responsible for GC-induced apoptosis, but the coordinated activation of the p53/p21 and p16 pathway is responsible for GC-induced endothelial cell senescence through a Rb-dependent mechanism. 相似文献
2.
Sayama K Shirakata Y Midorikawa K Hanakawa Y Hashimoto K 《Journal of cellular physiology》1999,179(1):40-44
It has been reported that p21, p53, and p16 affect the cell cycle and cell senescence. However, their roles in keratinocyte senescence are not clear. We established primary keratinocyte strains from 15 donors and maintained them until replicative senescence; their population doublings ranged from 5.7-45.2. These strains were classified based on their population doublings as short (5.7-10.4), intermediate (13.9-17.4), and long (21.5-45.2). To investigate the roles of p21, p53, and p16 in the cellular senescence of the cultured keratinocytes, we quantitatively analyzed p21, p53, and p16 levels of keratinocyte strains with different life spans by Western blot with Fluorol mager. p21 levels increased in the senescent phase but not in the nonsenescent phase in all of the short, intermediate, and long life-span strains. Northern blot analysis also revealed induction of p21 mRNA was similar to that of p21 protein levels. There were no apparent differences in p53 levels between senescent and nonsenescent cells. The short life-span strains exhibited a significant increase in p16 levels in the senescent phase (eighth or tenth passage). However, in two long life-span strains, p16 levels were increased in the nonsenescent phase (eighth passage) but then declined as the cells reached senescence (twenty-seventh passage). Therefore, induction of p16 appeared not to be associated with senescence in long life-span strains. In conclusion, p21 but not p16 or p53 may play roles in keratinocyte senescence. 相似文献
3.
Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shortening have been hampered by the concomitant induction of p16(INK4a) by cell culture conditions. To circumvent this problem, we studied the role of p16(INK4a) in the cellular response to acute telomere damage induced by a dominant negative allele of TRF2, TRF2(Delta B Delta M). This approach avoids the confounding aspects of culture stress because parallel cultures with and without telomere damage can be compared. Telomere damage generated with TRF2(Delta B Delta M) resulted in induction of p16(INK4a) in the majority of cells as detected by immunohistochemistry. Inhibition of p16(INK4a) with shRNA or overexpression of BMI1 had a significant effect on the telomere damage response in p53-deficient cells. While p53 deficiency alone only partially abrogated the telomere damage-induced cell cycle arrest, combined inhibition of p16(INK4a) and p53 led to nearly complete bypass of telomere-directed senescence. We conclude that p16(INK4a) contributes to the p53-independent response to telomere damage. 相似文献
4.
5.
Han J Tsukada Y Hara E Kitamura N Tanaka T 《The Journal of biological chemistry》2005,280(36):31548-31556
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF. 相似文献
6.
7.
8.
9.
Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway 总被引:3,自引:0,他引:3
de Oliveira RM 《FEBS letters》2006,580(24):5753-5758
Klotho has recently emerged as a regulator of aging. To investigate the role of Klotho in the regulation of cellular senescence, we generated stable MRC-5 human primary fibroblast cells knockdown for Klotho expression by RNAi. Downregulation of Klotho dramatically induces premature senescence with a concomitant upregulation of p21. The upregulation of p21 is associated with cell cycle arrest at G1/S boundary. Knockdown of p53 in the Klotho attenuated MRC-5 cells restores normal growth and replicative potential. These results demonstrate that Klotho normally regulates cellular senescence by repressing the p53/p21 pathway. Our findings implicate Klotho as a regulator of aging in primary human fibroblasts. 相似文献
10.
Influence of human p16(INK4) and p21(CIP1) on the in vitro activity of recombinant Plasmodium falciparum cyclin-dependent protein kinases. 总被引:1,自引:0,他引:1
Z Li K Le Roch J A Geyer C L Woodard S T Prigge J Koh C Doerig N C Waters 《Biochemical and biophysical research communications》2001,288(5):1207-1211
The regulatory mechanisms of most cyclin dependent protein kinases (CDKs) are well understood and are highly conserved in eukaryotes. CDKs from the malaria parasite, Plasmodium falciparum, appear to be regulated in a similar manner with regard to cyclin binding and phosphorylation. In order to further understand their regulatory mechanisms, we examined two classes of cyclin dependent kinase inhibitors (CDIs) to inhibit a panel of plasmodial CDKs. We find that Pfmrk and PfPK5 are inhibited by heterologous p21(CIP1) with varying degrees of inhibition. In contrast, PfPK6, a kinase with sequence features characteristic of both a CDK and MAP kinase, is unaffected by this CDI. Furthermore, the CDK4/6 specific CDI, p16(INK4), fails to inhibit these plasmodial CDKs. Taken together, these results suggest that plasmodial CDKs may be regulated by the binding of inhibitory proteins in vivo. 相似文献
11.
Immunohistochemical analysis of pRb2/p130, VEGF, EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expression patterns in gastric cancer 总被引:1,自引:0,他引:1
Mattioli E Vogiatzi P Sun A Abbadessa G Angeloni G D'Ugo D Trani D Gaughan JP Vecchio FM Cevenini G Persiani R Giordano A Claudio PP 《Journal of cellular physiology》2007,210(1):183-191
Although the considerable progress against gastric cancer, it remains a complex lethal disease defined by peculiar histological and molecular features. The purpose of the present study was to investigate pRb2/p130, VEGF, EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expressions, and analyze their possible correlations with clinicopathological factors. The expression patterns were examined by immunohistochemistry in 47 patients, 27 evaluated of intestinal-type, and 20 of diffuse-type, with a mean follow up of 56 months and by Western blot in AGS, N87, KATO-III, and YCC-2, -3, -16 gastric cell lines. Overall, stomach cancer showed EZH2 correlated with high levels of p53, Ki-67, and cytoplasmic pRb2/p130 (P < 0.05, and P < 0.01, respectively). Increased expression of EZH2 was found in the intestinal-type and correlated with the risk of distant metastasis (P < 0.05 and P < 0.01, respectively), demonstrating that this protein may have a prognostic value in this type of cancer. Interestingly, a strong inverse correlation was observed between p27(KIP1) expression levels and the risk of advanced disease and metastasis (P < 0.05), and a positive correlation between the expression levels of p21(WAF1) and low-grade (G1) gastric tumors (P < 0.05), confirming the traditionally accepted role for these tumor-suppressor genes in gastric cancer. Finally, a direct correlation was found between the expression levels of nuclear pRb2/p130 and low-grade (G1) gastric tumors that was statistically significant (P < 0.05). Altogether, these data may help shed some additional light on the pathogenetic mechanisms related to the two main gastric cancer histotypes and their invasive potentials. 相似文献
12.
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met5]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF–OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16INK4a protein expression and p21WAF1/CIP1 protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16INK4a or p21WAF1/CIP1 activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16INK4a and p21WAF1/CIP1. Collectively, these results indicate that both p16INK4a and p21WAF1/CIP1 are required for the OGF–OGFr axis to inhibit cell proliferation in normal cells. 相似文献
13.
14.
15.
Alterations in the cell cycle and in the protein level of cyclin D1, p21CIP1, and p16INK4a after exposure to 50 Hz MF in human cells 总被引:1,自引:0,他引:1
Lange S Richard D Viergutz T Kriehuber R Weiss DG Simkó M 《Radiation and environmental biophysics》2002,41(2):131-137
The effect of exposure to 50 Hz, 1 mT magnetic fields (MF) on the cell cycle in general, on the DNA synthesis in S-phase, and on the G1-phase regulating proteins Cdk4, cyclin D1, p16INK4a, and p21CIP1 was investigated in human amniotic fluid cells. The BrdU-incorporation assay revealed a significant diminution of S-phase cells in MF-exposed cultures. The protein level of Cdk4 did not change, but MF induced a decreased expression of cyclin D1 after 24 h and 30 h exposures. The level of p16INK4a increased at 1 h and 12 h after exposure, whereas the expression of p21CIP1 was enhanced at 6 h and 12 h after exposure. Reduced levels of both Cdk inhibitors were observed at longer exposure times (24 h, 30 h). Our results suggest an inhibitory effect of MF on the G1-phase induced by altered expression of p16INK4a and p21CIP1. 相似文献
16.
The p21(WAF1/CIP1) promoter is methylated in Rat-1 cells: stable restoration of p53-dependent p21(WAF1/CIP1) expression after transfection of a genomic clone containing the p21(WAF1/CIP1) gene 下载免费PDF全文
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies. 相似文献
17.
The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells 总被引:4,自引:0,他引:4
Hematopoietic cells are often exposed to transient hypoxia as they develop and migrate between blood and tissues. We tested the hypothesis that hypoxia-then-reoxygenation represent a stress for hematopoietic progenitor cells. Here we report that reoxygenation-generated oxidative stress induced senescence, tested as staining for SA-beta-galactosidase (SA-beta-gal), of bone marrow progenitor cells. Reoxygenation induced significant DNA damage and inhibited colony formation in lineage-depleted bone marrow cells enriched for progenitor cells. These reoxygenated cells exhibited a prolonged G(0)/G(1) accumulation without significant apoptosis after 24 h of treatments. Reoxygenated bone marrow progenitor cells expressed SA-beta-gal and senescence-associated proteins p53 and p21(WAF1). Reoxygenated Fancc-/- progenitor cells, which underwent significant apoptosis and senescence, tested as staining for SA-beta-gal, also expressed p16(INK4A). Suppression of apoptosis by the pan-caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone dramatically increased senescent Fancc-/- progenitor cells. Senescence induction, tested as staining for SA-beta-gal, in reoxygenated progenitor cells was closely correlated with extent of DNA damage and phosphorylation of ATM at Ser-1981 and p53 at Ser-15. Moreover, inhibition of ATM signaling reduced SA-beta-gal positivity but increased apoptosis of reoxygenated progenitor cells. Thus, these results suggest that the ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. 相似文献
18.
19.
A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy 总被引:34,自引:0,他引:34
p53 and INK4a/ARF mutations promote tumorigenesis and drug resistance, in part, by disabling apoptosis. We show that primary murine lymphomas also respond to chemotherapy by engaging a senescence program controlled by p53 and p16(INK4a). Hence, tumors with p53 or INK4a/ARF mutations-but not those lacking ARF alone-respond poorly to cyclophosphamide therapy in vivo. Moreover, tumors harboring a Bcl2-mediated apoptotic block undergo a drug-induced cytostasis involving the accumulation of p53, p16(INK4a), and senescence markers, and typically acquire p53 or INK4a mutations upon progression to a terminal stage. Finally, mice bearing tumors capable of drug-induced senescence have a much better prognosis following chemotherapy than those harboring tumors with senescence defects. Therefore, cellular senescence contributes to treatment outcome in vivo. 相似文献
20.
Augello C Gregorio V Bazan V Cammareri P Agnese V Cascio S Corsale S Calò V Gullo A Passantino R Gargano G Bruno L Rinaldi G Morello V Gerbino A Tomasino RM Macaluso M Surmacz E Russo A 《Journal of cellular physiology》2006,207(3):654-659
The putative role of TP53 and p16(INK4A) tumor suppressor genes and Ras oncogenes in the development and progression of salivary gland neoplasias was studied in 28 cases of pleomorphic adenomas (PA), 4 cases of cystic adenocarcinomas, and 1 case of carcinoma ex-PA. Genetic and epigenetic alterations in the above genes were analyzed by Polymerase Chain Reaction/Single Strand Conformational Polymorphism (PCR/SSCP) and sequencing and by Methylation Specific-PCR (MS-PCR). Mutations in TP53 were found in 14% (4/28) of PAs and in 60% (3/5) of carcinomas. Mutations in H-Ras and K-Ras were identified in 4% (1/28) and 7% (2/28) of PAs, respectively. Only 20% (1/5) of carcinomas screened displayed mutations in K-Ras. p16(INK4A) promoter hypermethylation was found in 14% (4/28) of PAs and 100% (5/5) carcinomas. All genetic and epigenetic alterations were detected exclusively in the epithelial and transitional tumor components, and were absent in the mesenchymal parts. Our analysis suggests that TP53 mutations and p16(INK4A) promoter methylation, but not alterations in the H-Ras and K-Ras genes, might be involved in the malignant progression of PA into carcinoma. 相似文献