首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupling of the chemical reaction of ATP hydrolysis to the transport of calcium from the cytoplasm into the lumen of sarcoplasmic reticulum vesicles can be defined by a set of rules that define alternating changes in the specificities of the enzyme for catalysis of chemical and physical reactions.  相似文献   

2.
We have used chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) to probe the functional dynamics of phospholamban (PLB), which regulates the Ca-ATPase (SERCA) in cardiac sarcoplasmic reticulum. The transmembrane domain of PLB inhibits SERCA at low [Ca(2+)], but the cytoplasmic domain relieves this inhibition upon Ser16 phosphorylation. Monomeric PLB was synthesized with Ala11 replaced by the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label, which reports peptide backbone dynamics directly. PLB was reconstituted into membranes in the presence or absence of SERCA. TOAC-PLB showed normal inhibitory function, which was reversed by phosphorylation at Ser16 or by micromolar [Ca(2+)]. EPR showed that the PLB cytoplasmic domain exhibits two resolved conformations, a tense T state that is ordered and a relaxed R state that is dynamically disordered and extended. PLB phosphorylation shifts this equilibrium toward the R state and makes it more dynamic (hyperextended). Phosphorylation strongly perturbs the dynamics of SERCA-bound PLB without dissociating the complex, while micromolar [Ca(2+)] has no effect on PLB dynamics. A lipid anchor synthetically attached to the N terminus of PLB permits Ca-dependent SERCA inhibition but prevents the phosphorylation-induced disordering and reversal of inhibition. We conclude that the relief of SERCA inhibition by PLB phosphorylation is due to an order-to-disorder transition in the cytoplasmic domain of PLB, which allows this domain to extend above the membrane surface and induce a structural change in the cytoplasmic domain of SERCA. This mechanism is distinct from the one that relieves PLB-dependent SERCA inhibition upon the addition of micromolar [Ca(2+)].  相似文献   

3.
We investigate the effect of autocatalysis on the conformational changes of membrane pumps during active transport driven by ATP. The translocation process is described by means of an alternating access model. The usual kinetic scheme is extended by introducing autocatalytic steps and allowing for dynamic formation of enzyme complexes. The usual features of cooperative models are recovered, i.e., sigmoid shapes of flux versus concentration curves. We show also that two autocatalytic steps lead to a mechanism of inhibition by the substrate as experimentally observed for some ATPase pumps. In addition, when the formation of enzyme complexes is allowed, the model exhibits a multiple stationary states regime, which can be related to a self-regulation mechanism of the active transport in biological systems. Correspondence to: G. Weissmüller  相似文献   

4.
Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was constructed to show interactions with SERCA. In this study, we examined the oligomeric state of phospholamban and the effects of phosphorylation and mutation of phospholamban on the interaction with SERCA in the 2D crystals. On the basis of projection maps from negatively stained and frozen-hydrated crystals, phosphorylation of Ser16 selectively disordered the cytoplasmic domain of wild type phospholamban. This was not the case for a pentameric gain-of-function mutant (Lys27Ala), which retained inhibitory activity and remained ordered in the phosphorylated state. A partial loss-of-function mutation that altered the charge state of phospholamban (Arg14Ala) retained an ordered state, while a complete loss-of-function mutation (Asn34Ala) was also disordered. The functional state of phospholamban was correlated with an order-to-disorder transition of the phospholamban cytoplasmic domain in the 2D co-crystals. Furthermore, co-crystals of the gain-of-function mutant (Lys27Ala) facilitated data collection from frozen-hydrated crystals. An improved projection map was calculated to a resolution of 8 Å, which supports the pentamer as the oligomeric state of phospholamban in the crystals. The 2D co-crystals with SERCA require a functional pentameric form of phospholamban, which physically interacts with SERCA at an accessory site distinct from that used by the phospholamban monomer for the inhibitory association.  相似文献   

5.
In previous studies we have described the inhibitory action of a cytosolic protein fraction from heart muscle on ATP-dependent Ca2+ uptake by the sarcoplasmic reticulum (SR); further this inhibition was shown to be blocked by an inhibitor antagonist, also derived from the cytosol (Narayananet al., Biochim. Biophys. Acta. 735: 53–66, 1983; Can. J. Physiol. Pharmacol. 67: 999–1006, 1989). Here we report the complete purificationof the antagonist protein (AP) and characterization of its functional properties. AP was purified to homogeneity from rabbit heart cytosol using two procedures, one utilizing sequential DE52-cellulose and hydroxylapatite chromatography, and the other utilizing anion exchange chromatography on Mono QTM HR 5/5 column in a Pharmacia FPLC system. The purified AP has an apparent molecular weight of 64 kDa; it is made up of about 43% hydrophobic and 57% hydrophilic residues with the following amino-terminal sequence: E-A-H-K-S-E-I-A-H-R-F-N-D-V-G-E-E-H-F-I-G-L-V-L-I-T-F-S-Q-Y-L-Q-K-X-P-Y-E-E-H-A. This partial amino acid sequence data indicate strong sequence homology to serum albumin (sequence homology: 85% to rat serum albumin and 74% to sheep and bovine serum albumin). The purified AP caused concentration-dependent-blockade of the inhibition of Ca2+ uptake by SR observed in the presence of the cytosolic Ca2+ uptake inhibitor protein. This antagonist action of AP was markedly potentiated by calmodulin. AP did not influence the Ca2+ uptake activity of SR measured in the absence of the inhibitor protein and calmodulin. These observations suggest a likely physiological role for AP in the regulation of Ca2+ cycling by SR through a calmodulin-dependent mechanism  相似文献   

6.
7.
The calcium transport mechanism of cardiac sarcoplasmic reticulum (SR) is regulated by a phosphoregulatory mechanism involving the phosphorylation-dephosphorylation of an integral membrane component, termed phospholamban. Phospholamban, a 27,000 Da proteolipid, contains phosphorylation sites for three independent protein kinases: 1) cAMP-dependent, 2) Ca2+-calmodulin-dependent, and 3) Ca2+-phospholipid-dependent. Phosphorylation of phospholamban by any one of these kinases is associated with stimulation of the calcium transport rates in isolated SR vesicles. Dephosphorylation of phosphorylated phospholamban results in the reversal of the stimulatory effects produced by the protein kinases. Studies conducted on perfused hearts have shown that during exposure to beta-adrenergic agents, a good correlation exists between the in situ phosphorylation of phospholamban and the relaxation of the left ventricle. Phosphorylation of phospholamban in situ is also associated with stimulation of calcium transport rates by cardiac SR, similar to in vitro findings. Removal of beta-adrenergic agents results in the reversal of the inotropic response and this is associated with dephosphorylation of phospholamban. These findings indicate that a phospho-regulatory mechanism involving phospholamban may provide at least one of the controls for regulation of the contractile properties of the myocardium.  相似文献   

8.
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum - PM plasma membrane - CPA cyclopiazonic acid - DTT dithiothreitol  相似文献   

9.
10.
We have cloned, purified to homogeneity, and characterized as a molecular chaperone the Escherichia coli YedU protein. The purified protein shows a single band at 31 kDa on SDS-polyacrylamide gels and forms dimers in solution. Like other chaperones, YedU interacts with unfolded and denatured proteins. It promotes the functional folding of citrate synthase and alpha-glucosidase after urea denaturation and prevents the aggregation of citrate synthase under heat shock conditions. YedU forms complexes with the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. In contrast to DnaK/Hsp70, ATP does not stimulate YedU-dependent citrate synthase renaturation and does not affect the interaction between YedU and unfolded proteins, and YedU does not display any peptide-stimulated ATPase activity. We conclude that YedU is a novel chaperone which functions independently of an ATP/ADP cycle.  相似文献   

11.
The vacuolar system of eukaryotic cells contains a large number of organelles that are primary energized by an H+-ATPase that was named V-ATPase. The structure and function of V-ATPases from various sources was extensively studied in the last few years. Several genes encoding subunits of the enzyme were cloned and sequenced. The sequence information revealed the relations between V-ATPases and F-ATPases that evolved from common ancestral genes. The two families of proton pumps share structural and functional similarity. They contain distinct peripheral catalytic sectors and hydrophobic membrane sectors. Genes encoding subunits of V-ATPase in yeast cells were interrupted to yield mutants that are devoid of the enzyme and are sensitive to pH and calcium concentrations in the medium. The mutants were used to study structure, function, molecular biology, and biogenesis of the V-ATPase. They also shed light on the functional assembly of the enzyme in the vacuolar system.  相似文献   

12.
In this study we investigated the function of the sheep orthologue of ATP7B (sATP7B), the protein affected in the human copper toxicosis disorder Wilson disease. Two forms of sATP7B are found in the sheep, a 'normal' form and one with an alternate N terminus, both of which were expressed in CHO-K1 cells. Cells expressing either form of sATP7B were more resistant to copper than the parental CHO-K1 cells. Subcellular localisation studies showed that both forms of sATP7B were similarly located in the trans-Golgi network (TGN). When the extracellular copper concentration was increased, each form of sATP7B redistributed to a punctate, vesicular compartment that extended throughout the cytoplasm. Both forms of sATP7B recycled to the perinuclear location within one hour when the cells were subsequently incubated in basal medium. After treatment of cells with bafilomycin A1 sATP7B accumulated in cytoplasmic vesicles, implying that ATP7B continuously recycles via the endocytic pathway. These results suggest that both forms of sATP7B are functional copper-transport proteins and that the intracellular location and trafficking of the sheep protein within the cell also appears normal.  相似文献   

13.
The mechanism whereby events in and around the catalytic site/head of Ca2+-ATPase effect Ca2+ release to the lumen from the transmembrane helices remains elusive. We developed a method to determine deoccluded bound Ca2+ by taking advantage of its rapid occlusion upon formation of E1PCa2 and of stabilization afforded by a high concentration of Ca2+. The assay is applicable to minute amounts of Ca2+-ATPase expressed in COS-1 cells. It was validated by measuring the Ca2+ binding properties of unphosphorylated Ca2+-ATPase. The method was then applied to the isomerization of the phosphorylated intermediate associated with the Ca2+ release process E1PCa2E2PCa2E2P + 2Ca2+. In the wild type, Ca2+ release occurs concomitantly with EP isomerization fitting with rate-limiting isomerization (E1PCa2E2PCa2) followed by very rapid Ca2+ release. In contrast, with alanine mutants of Leu119 and Tyr122 on the cytoplasmic part of the second transmembrane helix (M2) and Ile179 on the A domain, Ca2+ release in 10 μm Ca2+ lags EP isomerization, indicating the presence of a transient E2P state with bound Ca2+. The results suggest that these residues function in Ca2+ affinity reduction in E2P, likely via a structural rearrangement at the cytoplasmic part of M2 and a resulting association with the A and P domains, therefore leading to Ca2+ release.  相似文献   

14.
The sarcoplasmic reticulum calcium pump (SERCA) and its regulator, phospholamban, are essential components of cardiac contractility. Phospholamban modulates contractility by inhibiting SERCA, and this process is dynamically regulated by β-adrenergic stimulation and phosphorylation of phospholamban. Herein we reveal mechanistic insight into how four hereditary mutants of phospholamban, Arg(9) to Cys, Arg(9) to Leu, Arg(9) to His, and Arg(14) deletion, alter regulation of SERCA. Deletion of Arg(14) disrupts the protein kinase A recognition motif, which abrogates phospholamban phosphorylation and results in constitutive SERCA inhibition. Mutation of Arg(9) causes more complex changes in function, where hydrophobic substitutions such as cysteine and leucine eliminate both SERCA inhibition and phospholamban phosphorylation, whereas an aromatic substitution such as histidine selectively disrupts phosphorylation. We demonstrate that the role of Arg(9) in phospholamban function is multifaceted: it is important for inhibition of SERCA, it increases the efficiency of phosphorylation, and it is critical for protein kinase A recognition in the context of the phospholamban pentamer. Given the synergistic consequences on contractility, it is not surprising that the mutants cause lethal, hereditary dilated cardiomyopathy.  相似文献   

15.
We have used synthetic lipidated peptides ("peptide-amphiphiles") to study the structure and function of isolated domains of integral transmembrane proteins. We used 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis to prepare full-length phospholamban (PLB(1-52)) and its cytoplasmic (PLB(1-25)K: phospholamban residues 1-25 plus a C-terminal lysine), and transmembrane (PLB(26-52)) domains, and a 38-residue model alpha-helical sequence as a control. We created peptide-amphiphiles by linking the C-terminus of either the isolated cytoplasmic domain or the model peptide to a membrane-anchoring, lipid-like hydrocarbon tail. Circular dichroism measurements showed that the model peptide-amphiphile, either in aqueous suspension or in lipid bilayers, had a higher degree of alpha-helical secondary structure than the unlipidated model peptide. We hypothesized that the peptide-amphiphile system would allow us to study the function and structure of the PLB(1-25)K cytoplasmic domain in a native-like configuration. We compared the function (inhibition of the Ca-ATPase in reconstituted membranes) and structure (via CD) of the PLB(1-25) amphiphile to that of PLB and its isolated transmembrane and cytoplasmic domains. Our results indicate that the cytoplasmic domain PLB(1-25)K has no effect on Ca-ATPase (calcium pump) activity, even when tethered to the membrane in a manner mimicking its native configuration, and that the transmembrane domain of PLB is sufficient for inhibition of the Ca-ATPase.  相似文献   

16.
The effect of protein undernutrition on the activity of the smoothendoplasmic reticulum (microsomal) Ca2+-ATPase (SERCA) wasinvestigated. After 12 weeks of ad libitum ingestion of low proteindiet (5% protein), a significant depression (p<0.05) of liver ERCa2+-ATPase activity (68.6% depression) was observed. However,no significant effects on cytochrome P450 activity and relative liverweight were found. It is proposed that low protein diet by inhibitingthe rat liver SERCA activity, might increase the cytosolic free calciumion concentration ([Ca2+]) and promote the development of livertumor. The possible mechanisms of low protein diet induced inhibition ofSERCA activity are highlighted.  相似文献   

17.
18.
M Nassal 《Gene》1988,66(2):279-294
We have chemically synthesized a DNA duplex of 560 nucleotides that codes for the hepatitis B virus (HBV) core protein. The synthetic gene contains 27 unique internal restriction sites. Thereby, it can easily be mutagenized by replacement of rather short restriction fragments. A number of restriction recognition sequences are in common between the synthetic and the authentic gene, thus allowing for the transfer of synthetic segments into the cloned viral genome. Several unexpected mutations in the synthetic gene were readily corrected utilizing the multiple unique restriction sites. In Escherichia coli, the expression level of the synthetic gene product amounts to about 4% of the total soluble protein. It forms particles closely resembling native HBV cores. After transfer of the synthetic gene into the viral genome, transient expression in a hepatoma cell line yields proteins indistinguishable from the native gene products. The synthetic gene thus provides a useful tool for studies on the structure and function of the isolated HBV core protein as well as the gene and its various products in the viral life-cycle.  相似文献   

19.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号