首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytosolic P-enolpyruvate carboxykinase activity was measured in mammary gland and liver of animals at all stages of the reproductive cycle. The specific activity of this enzyme was almost absent in the mammary gland of virgin rats. Different pattern of P-enolpyruvate carboxykinase activity was obtained in liver and mammary gland during lactation cycle. The specific activity of the enzyme increased more than 40-fold in mammary gland and 2-fold in liver during the transition from mid-pregnancy to mid-lactation. Weaning of mid-lactating rats for 48 h resulted in an abrupt change in the enzyme activity in mammary gland while there was a small change in liver. In all the experiments performed, the activity of P-enolpyruvate correlates inversely with the plasma insulin levels described for the lactogenic process.  相似文献   

2.
We report crystal structures of the human enzyme phosphoenolpyruvate carboxykinase (PEPCK) with and without bound substrates. These structures are the first to be determined for a GTP-dependent PEPCK, and provide the first view of a novel GTP-binding site unique to the GTP-dependent PEPCK family. Three phenylalanine residues form the walls of the guanine-binding pocket on the enzyme's surface and, most surprisingly, one of the phenylalanine side-chains contributes to the enzyme's specificity for GTP. PEPCK catalyzes the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. Because the gluconeogenic pathway contributes to the fasting hyperglycemia of type II diabetes, inhibitors of PEPCK may be useful in the treatment of diabetes.  相似文献   

3.
4.
The regulation of phosphoenolpyruvate carboxykinase in fetal rat liver   总被引:5,自引:0,他引:5  
  相似文献   

5.
The presence of arginine at the active site of avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification followed by a characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione all irreversibly inhibit the enzyme with second-order rate constants of 3.42 M-1 min-1, 3.13 M-1 min-1 and 0.313 M-1 min-1, respectively. The substrates phosphoenolpyruvate, IDP, and the activator Mn2+ offer little to modest protection from inhibition. Either CO2 or CO2 in the presence of any of the other substrates elicited potent protection against modification. Protection by CO2 against modification by phenylglyoxal or 1,2-cyclohexanedione gave a biphasic pattern. Rapid loss in activity to 40-60% occurred, followed by a very slow loss. Kinetics of inhibition suggest that the modification of arginine is specific and leads to loss of enzymatic activity. Substrate protection studies indicate an arginine residue(s) at the CO2 site of phosphoenolpyruvate carboxykinase. Apparently no arginine residues are at the binding site of the phosphate-containing substrates. Partially inactive (40-60% activity) enzyme, formed in the presence of CO2, has a slight change of its kinetic constants, and no alteration of its binding parameters or secondary structure as demonstrated by kinetic, proton relaxation rate, and circular dichroism studies. Labeling of enzyme with [(7-)14C]phenylglyoxal in the presence of CO2 (40-60% activity) showed 2 mol of phenylglyoxal/enzyme or 1 arginine or cysteine residue modified. Labeling of phosphoenolpyruvate carboxykinase in the absence of CO2 yielded 6 mol of label/enzyme. Labeling results indicate that avian phosphoenolpyruvate carboxykinase has 2 or 3 reactive arginine residues out of a total of 52 and only 1 or 2 are located at the active site and are involved in CO2 binding and activation.  相似文献   

6.
7.
The histidine-selective reagents diethylpyrocarbonate (DEPC) and dimethylpyrocarbonate were used to study active site residues of phosphoenolpyruvate carboxykinase. Both reagents show pseudo first-order inhibition of enzyme activity at 22 +/- 1 degree C with calculated second-order rate constants of 2.8 and 4.6 M-1 s-1, respectively. The inhibition appears partially reversible. Substrates affect the rate of inhibition: KHCO3 enhances the rate, Mn2+ has little effect, and phosphoenolpyruvate decreases the rate. The best protection is obtained by IDP or IDP and Mn2+. The kinetic studies show that modification of histidine is specific and leads to loss of enzymatic activity. Two histidines per enzyme are modified by DEPC, as measured by an absorption change at 240 nm, in the absence of substrate, leading to loss in activity. One histidine per molecule is modified in the presence of KHCO3, giving inactivation. Cysteine and lysine residues are not affected. A study of the inhibition rate constant as a function of pH gives a pKa of 6.7. Enzyme modified by DEPC in the absence of substrate (1% remaining activity) shows no binding of ITP or of phosphoenolpyruvate to the enzyme.Mn2+ complex as studied by proton relaxation rates. When enzyme is modified in the presence of KHCO3 (44% remaining activity), ITP and KHCO3 bind to the enzyme.Mn2+ complex similarly to the binding to native enzyme. Phosphoenolpyruvate binding to modified enzyme.Mn results in an enhancement of proton relaxation rates rather than the decrease observed with native enzyme.Mn. The CD spectra of histidine-modified enzyme show a decrease in alpha-helical and random structure with an increase in anti-parallel beta-sheet structure compared to native enzyme. These results show that avian phosphoenolpyruvate carboxykinase has 2 histidine residues which are reactive with DEPC and dimethylpyrocarbonate, and one of the 15 histidine residues in the protein is at or near the phosphoenolpyruvate binding site and is involved in catalysis.  相似文献   

8.
9.
10.
11.
12.
13.
14.
J M Konopka  H A Lardy  P A Frey 《Biochemistry》1986,25(19):5571-5575
Rat liver cytosolic phosphoenolpyruvate carboxykinase (PEPCK) utilizes inosine 5'-(3-thiotriphosphate) (ITP gamma S) as an excellent substrate, with Km and V values of 0.08 mM and 37 mumol min-1 (mg of protein)-1, respectively, compared with the corresponding values of 0.168 mM and 76 mumol min-1 (mg of protein)-1 for ITP. Thus, the V/Km values for the two substrates are the same. Reaction of (RP)-[gamma-18O2]ITP gamma S with oxalacetate catalyzed by cytosolic PEPCK produces (SP)-thio[18O]phosphoenolpyruvate. Therefore, thiophosphoryl transfer catalyzed by this enzyme proceeds with overall inversion of configuration at P. The reaction mechanism involves an uneven number of phosphotransfer steps, most likely a single step transfer between bound substrates. The results do not support the involvement of a phosphoryl enzyme intermediate in the mechanism.  相似文献   

15.
The inhibition of chicken liver phosphoenolpyruvate carboxykinase by 3-mercaptopicolinic acid (3-MP) has been investigated. Kinetic studies show 3-MP to be a noncompetitive inhibitor relative to all substrates and to the activator, Mn2+. EPR studies demonstrate that Mn2+ binding to the enzyme is unaffected by 3-MP. Proton relaxation rate studies demonstrate that 3-MP binds to the binary E X Mn complex with a KD of 0.5 X 10(-6) M and gives a ternary enhancement of 8.0. Additional proton relaxation rate studies detected formation of the quaternary complexes E X Mn X IDP X 3-MP, E X Mn X ITP X 3-MP, and E X Mn X CO2 X 3-MP. High resolution 1H nuclear relaxation rate studies suggest that 3-MP binds in close proximity to the activator cation, Mn2+, but not in the first coordination sphere. Active site models suggest that the 3-MP-binding site may partially overlap the phosphoenolpyruvate-binding site. The NMR studies, which detected formation of the quaternary E X Mn X 3-MP X phosphoenolpyruvate complex, also demonstrated that the binding of one of these ligands affects the interactions of the other ligand with E X Mn. Calorimetric studies of the E X Mn complex demonstrated that 3-MP causes an increase in the transition temperature midpoint without an increase in enthalpy. These results indicate that 3-MP causes a conformational change in the enzyme but does not increase the thermostability of the ternary complex. The experiments reported herein suggest that inhibition by 3-MP is due to specific and reversible binding within the active site of phosphoenolpyruvate carboxykinase.  相似文献   

16.
17.
Summary The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAt mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant. Whereas the alterations in the overall abundance of the two mRNAs were similar, the distribution patterns of both mRNAs differed. While PCK mRNA became more and more restricted to a small area of periportal cells towards the end of refeeding, TAT mRNA was first evenly distributed in the periportal and perivenous area with higher amounts in the intermediate zone and then again was predominantly located in the periportal area. The present data indicate that the predominant periportal localization of PCK and TAT activity and enzyme protein is regulated mainly at the pretranslational level.  相似文献   

18.
Hlavaty JJ  Nowak T 《Biochemistry》2000,39(6):1373-1388
Chicken liver phosphoenolpyruvate carboxykinase (PEPCK) requires two divalent cations for activity. One cation activates the enzyme through a direct interaction with the protein at site n(1). The second cation, at site n(2), acts in the cation-nucleotide complex that serves as a substrate. The Co(3+)(n(1))-PEPCK and Cr(3+)(n(1))-PEPCK complexes were used to examine the kinetic, mechanistic, and binding properties of the n(2) metal. EPR studies performed on the Co(3+)(n(1))-PEPCK-GTP complex yielded a stoichiometry of 1 mol of Mn(2+) bound per mole of Co(3+)(n(1))-PEPCK-GTP with a K(D) of 5 microM. PRR studies show a significant enhancement for the Co(3+)(n(1))-PEPCK-Mn(2+)(n(2))-GDP complex. A change in enhancement in the presence of PEP suggests that PEP interacts with the second metal ion. The distance between Mn(2+) at site n(2) on PEPCK and the cis and trans protons and the (31)P of PEP are 7.0, 7.5, and 4.8 A, respectively, as measured by high-resolution NMR. PRR studies of the Co(3+)(n(1))-PEPCK-Mn(2+)(n(2))-GTP and Co(3+)(n(1))-PEPCK-Mn(2+)(n(2))-GDP complexes as a function of frequency (omega(I)) were used to estimate the hydration number of the n(2) metal to be between 0.5 and 0.7. The metal-metal distance for the M(n(1))-PEPCK-M(n(2))-GTP complex is approximately 8.3 A, and the distance for the M(n(1))-PEPCK-M(n(2))-GDP complex is 9.2 A. The change in the metal-metal distance suggests a conformational change at the active site of PEPCK occurs during catalysis. The Co(3+)(n(1))-PEPCK complex was incubated with Co(2+), GTP, and H(2)O(2) to create a doubly labeled and inactive Co(3+)(n(1))-PEPCK-Co(3+)(n(2))-GTP complex. The Co(3+)(n(1))-PEPCK-Co(3+)(n(2))-GTP complex was digested by LysC, and two cobalt-containing peptides were purified using RP-HPLC. Amino acid sequencing of the second cobalt-containing peptide points to the region of Tyr57-Lys76 of PEPCK. Asp66, Asp69, and Glu74 are all feasible ligands to the site n(2) metal.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号