首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In human pigmentary cirrhosis nuclear (pseudo-)inclusions of cytoplasmic material, containing less or more degenerated and therefore faintly stained hemosiderin granules, are to be observed. But sometimes there are also finely fibrillar or granular proteinaceous materials, stainable by the Prussian-blue reaction, lying between the chromatin-strands or occupying the whole nucleus and displacing the chromatin to the nuclear envelope (margination of chromatin). Such uncoloured substances may condense into homogeneous masses and nearly hexagonal (0r related) crystals with a diameter up to 14 micron and a yellow-brownish colour, giving a strongly positive PERL's reaction. In contrast to the preceding stages intranuclear crystals of this kind have been observed in one case only. After destruction of the nuclear envelope and the marginated chromatin the crystals are lying free in the cytoplasm and later on, the cytoplasm being destroyed too, they may be ingested by von Kupffer cells. All the iron containing crystals, to be found in the cytoplasm, derive from former intranuclear inclusions. The intranuclear deposits of iron containing protein are interpreted as ferritin-aggregates. It is supposed that ferritin molecules, built up in the cytoplasm, do enter the nucleus via the pores of the nuclear envelope. Such an event not only signalizes a cytopathologic reaction but in turn may give rise to such additional cytopathologic lesions as cell shrinking and cell death.  相似文献   

2.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

3.
R. Barton 《Planta》1967,77(3):203-211
Summary New intranuclear crystals were described in cells of Chara vulgaris. These were needle-like structures extending for about 8 in length and 350m×110m in transverse dimensions. Each crystal was composed of hexagonally-packed, tubular structures about 200–240 Å in diameter, apparently running parallel to each other along the longitudinal axis. Such crystals appeared to pass through one of the several nucleoli in each nucleus. It is suggested that the crystals are proteins having a storage function, which are synthesised in the nucleolus.  相似文献   

4.
Summary In the nuclei of atypical spermatids ofLumbricus terrestris granular or filamentous inclusions are surrounded by dense chromatin. Aggregation and condensation of chromatin in nuclei during spermatid differentiation coincide with increase in density, granularity, and the subsequent crystallization of the intranuclear inclusion. In mature spermatozoa, the crystalline inclusion displaying an irregular shape is composed of parallel repeating units measuring 50–80 Å. The subunits sometimes possess a clear central cavity.Atypical spermatozoa, possessing inclusions that distort their normally cylindrical shape, possess typical acrosomes, middle pieces, and flagella. Spermatozoa bearing intranuclear crystals are rarely observed in the seminal receptacles ofLumbricus.These intranuclear inclusions probably represent proteinaceous material that is not eliminated during nuclear differentiation. Their sole existence in the nuclei of spermatozoa, their transformation into crystalline structures during spermiogenesis, and their similarity to crystals in virus infected plant and animal cells suggest a viral origin.Supported by a training grant (GM-00582-07) from the Public Health Service.  相似文献   

5.
In the lower eukaryote Physarum polycephalum, depending upon the existing cell state (i.e., actively growing plasmodia or metabolically quiescent cysts), there is in the complement of acidic chromatin proteins certain “proliferation” or “nonproliferation” associated proteins. Nonproliferative microplasmodia can be induced to undergo a 12 hr period of physiological and metabolic reorganization resulting in mitosis, DNA synthesis, and the reestablishment of active synchronous growth. During the 12 hr period of chromatin reactivation the specific acidic proteins associated with inactive chromatin and nonproliferative cell states decrease in intranuclear concentration in a continuous and linear fashion. The specific proteins associated with metabolically active chromatin and proliferative cell states are synthesized preferentially at different times during the 12 hr transition period. While several of the proliferation-associated proteins increase continuously in intranuclear concentration during the reactivation period others show maximum increases in their intranuclear concentration during the 2 hr period just preceding mitosis and DNA synthesis. The changes which develop in the acidic chromatin and nucleolar proteins during the period of chromatin reactivation occur independent of and prior to DNA synthesis and mitosis. Incorporation studies using [14C]-glutamic acid have provided additional evidence for periods of pooled protein and delayed intranuclear binding. The relative specific activities of individual protein bands determined through gel radiography show temporal differences independent of intranuclear protein concentration.It has been estimated that the proteins which are synthesized and accumulate in the nucleus during periods of chromatin reactivation are present in intranuclear concentrations between 80,000 and 1,000,000 copies per nucleus.  相似文献   

6.
Background information. Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin‐binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin‐associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N‐terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin‐like proteins could act as structural nuclear ABPs in plants. Results. We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α‐ and β‐spectrin chains that cross‐react in plant nuclei. Their role as nuclear ABPs was analysed by co‐immunoprecipitation and IF (immunofluorescence) co‐localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non‐ionic detergent, and in low‐ and high‐salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin‐like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co‐immunoprecipitate and co‐localize with actin. Conclusions. These results reveal that the plant nucleus contains spectrin‐like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin‐like proteins could be involved in multiple nuclear functions.  相似文献   

7.
Summary The localization and movements of four nuclear proteins, originally contained in the germinal vesicle ofXenopus oocytes, were followed through early development from cleavage to late neurula. The study made use of monoclonal antibodies directed against germinal vesicle proteins. Biochemical methods showed that all proteins persist in the embryo without a change in molecular size or gross concentration. At early stages the proteins are localized preferentially in the cytoplasm of the animal hemisphere. They shift from the cytoplasm to the nucleus at stages specific for the individual proteins. During mitosis the proteins are released from the nucleus into the cytoplasm.  相似文献   

8.
We examined the effect of heat stress on localization of two sHsps, alphaB-crystallin and Hsp25, and of Hsc70, a member of a different class of heat shock proteins (Hsps), in both undifferentiated and differentiated mouse C2C12 cells. Under normal conditions, alphaB-crystallin and Hsp25 are found in the cytoplasm; only alphaB-crystallin is also found in the nucleus, distributed in a speckled pattern. Hsc70 is found to be homogeneously distributed throughout the cell. On heat stress, all these proteins translocate almost entirely into the nucleus and upon recovery relocate to the cytoplasm. Dual staining experiments using C2C12 myoblasts show that alphaB-crystallin and Hsp25, but not Hsc70, colocalize with the intranuclear lamin A/C and the splicing factor SC-35, suggesting interactions of sHsps and intranuclear lamin A/C. Interestingly, none of these proteins are found in the myotube nuclei. Upon heat stress, only Hsc70 translocates into the myotube nuclei. This differential entry of alphaB-crystallin and Hsp25 into the nuclei of myoblasts and myotubes upon heat stress may have functional role in the development and/or in the maintenance of muscle cells. Our study therefore suggests that these sHsps may be a part of the intranuclear lamin A/C network or stabilizing this specific network.  相似文献   

9.
The retroviral Gag polyprotein directs virus particle assembly, resulting in the release of virions from the plasma membranes of infected cells. The earliest steps in assembly, those immediately following Gag synthesis, are very poorly understood. For Rous sarcoma virus (RSV), Gag proteins are synthesized in the cytoplasm and then undergo transient nuclear trafficking before returning to the cytoplasm for transport to the plasma membrane. Thus, RSV provides a useful model to study the initial steps in assembly because the early and later stages are spatially separated by the nuclear envelope. We previously described mutants of RSV Gag that are defective in nuclear export, thereby isolating these “trapped” Gag proteins at an early assembly step. Using the nuclear export mutants, we asked whether Gag protein-protein interactions occur within the nucleus. Complementation experiments revealed that the wild-type Gag protein could partially rescue export-defective Gag mutants into virus-like particles (VLPs). Additionally, the export mutants had a trans-dominant negative effect on wild-type Gag, interfering with its release into VLPs. Confocal imaging of wild-type and mutant Gag proteins bearing different fluorescent tags suggested that complementation between Gag proteins occurred in the nucleus. Additional evidence for nuclear Gag-Gag interactions was obtained using fluorescence resonance energy transfer, and we found that the formation of intranuclear Gag complexes was dependent on the NC domain. Bimolecular fluorescence complementation allowed the direct visualization of intranuclear Gag-Gag dimers. Together, these experimental results strongly suggest that RSV Gag proteins are capable of interacting within the nucleus.  相似文献   

10.
J. Scott  Sharon Broadwater 《Protoplasma》1989,152(2-3):112-122
Summary Uniseriate filaments of the freshwater red algaCompsopogon coeruleus were examined by transmission electron microscopy for details of vegetative organization and cell division with the goal of providing useful taxonomic characters. Each cell's single, complex chloroplast contains a peripheral encircling thylakoid, and unlike the vast majority of red algae, the cis-regions of dictyosomes are not consistently juxtaposed with mitochondria. These subcellular features, which are present in all examined genera in theCompsopogonales, Erythropeltidales, andRhodochaetales, along with certain unique reproductive characteristics, unify these three orders. During mitosis in uncorticated axial cells, a small, ring-shaped nucleus associated organelle (NAO) is located at each division pole, an intranuclear spindle comes to a moderately acute focus at the flattened, fenestrated metaphase-anaphase division poles and perinuclear ER partially encloses dividing nuclei, including a well-developed interzonal midpiece. The cleavage furrow penetrates the large, central vacuolar region to separate daughter nuclei. These cell division features most closely resemble the pattern described for the orderCeramiales. Our observations of vegetative and dividing cells ofC. coeruleus supplement the growing volume of evidence in favour of uniting all red algae into a single class without subclass designations.Abbreviations ER endoplasmic reticulum - IZM interzonal midpiece - MT microtubule - MTOC microtubule organizing center - NAO nucleus associated organelle - NE nuclear envelope - PER perinuclear endoplasmic reticulum  相似文献   

11.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

12.
13.
T. Kanbe  K. Tanaka 《Protoplasma》1985,129(2-3):198-213
Summary Mitosis in the dermatophyteMicrosporum canis was studied by freeze substitution and electron microscopy, and analyzed by three dimensional reconstruction from serial sections of the mitotic nuclei. The interphase nucleus has associated nucleus-associated organelle (NAO) on a portion of the outer surface of the nuclear envelope, subjacent to which there was dense intranuclear material. The NAO divided and separated on the envelope, and a spindle was formed. The spindle was composed mostly of microtubules extended between opposite NAOs. Pairing of kinetochores was observed in the spindle from an early stage of development, when chromosomes were not so condensed, and remained unchanged while chromosome condensation proceeded until metaphase. Before the completion of nuclear division, daughter nuclei were connected by a narrow spindle channel, and then the nucleolus, whose structure underwent minimal change during mitosis, was eliminated into the cytoplasm.  相似文献   

14.
Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells.  相似文献   

15.
The majority of the proteins in the chloroplast are encoded in the nucleus and synthesised in the cytoplasm as precursors with N-terminal extensions. These targeting sequences guide the precursor proteins into the chloroplast where they are immediately cleaved off by a stromal processing protease (SPP). It is commonly assumed that in higher plant chloroplasts one general SPP processes almost all imported precursor proteins. In the green alga Chlamydomonas, however, there exist several different SPPs which process the various Chlamydomonas precursor proteins. The seven precursor proteins investigated here, which were all correctly imported into isolated chloroplasts, could be divided into two groups: Four precursor proteins were cleaved correctly when processed in vitro with an extract of stromal proteins. Four different SPPs were found in Chlamydomonas chloroplasts to be responsible for the processing of this class of precursors and these four activities were separated chromatographically, characterised and further distinguished by their sensitivity to different inhibitors. The three precursors of the second group were degraded completely by unidentified enzyme(s) present in the stromal extract. Degradation of these precursors was dependent on their conformational integrity as well as on the redox state in the stroma. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Disruption of the functional protein balance in living cells activates protective quality control systems to repair damaged proteins or sequester potentially cytotoxic misfolded proteins into aggregates. The established model based on Saccharomyces cerevisiae indicates that aggregating proteins in the cytosol of eukaryotic cells partition between cytosolic juxtanuclear (JUNQ) and peripheral deposits. Substrate ubiquitination acts as the sorting principle determining JUNQ deposition and subsequent degradation. Here, we show that JUNQ unexpectedly resides inside the nucleus, defining a new intranuclear quality control compartment, INQ, for the deposition of both nuclear and cytosolic misfolded proteins, irrespective of ubiquitination. Deposition of misfolded cytosolic proteins at INQ involves chaperone‐assisted nuclear import via nuclear pores. The compartment‐specific aggregases, Btn2 (nuclear) and Hsp42 (cytosolic), direct protein deposition to nuclear INQ and cytosolic (CytoQ) sites, respectively. Intriguingly, Btn2 is transiently induced by both protein folding stress and DNA replication stress, with DNA surveillance proteins accumulating at INQ. Our data therefore reveal a bipartite, inter‐compartmental protein quality control system linked to DNA surveillance via INQ and Btn2.  相似文献   

17.
TEM observations were carried out on 40 taxa of the familyVerbenaceae and 35 taxa of the familyOleaceae, in order to ascertain distribution, ultrastructure and morphology of the intranuclear proteinic inclusions in the mesophyll parenchymatic cells. The investigated genera amount to some 25% and 60% respectively of the genera of the two families. Inside theVerbenaceae, lamellar inclusions (L-type) occur in 6 out of 23 investigated genera: they are mostly present inside the tribesCitharexyleae andVerbeneae (both belonging toVerbenoideae), while they are absent in other subfamilies. All of the investigatedOleaceae genera show intranuclear crystalline inclusions (C 1-type) of three different shapes. Among theAsteridae this is a character peculiar toOleaceae. They appear to be a well defined natural group, including the controversial genusNyctanthes.  相似文献   

18.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

19.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号