首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1-1. These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.Abbreviations BA 6-benzyl-aminopurine - NAA 1-Naphthaleneacetic acid - MS Murashige & Skoog (1962) medium  相似文献   

2.
Waltraud Rücker 《Protoplasma》1982,113(2):103-109
Summary The influence of a morphactin, chlorflurenol-methylester (CFM), on the growth, the morphogenesis and the isoelectric peroxidase pattern was investigated in both callus cultures (two different tissue culture strains) and multiple bud cultures ofNicotiana tabacum var.Wisconsin. CFM (range of concentration between 10–6g/ml and 10–4g/ml) was applied singly, or in combination with a cytokinin, benzylaminopurine (BAP), or with an auxin, indoleacetic acid (IAA), or with IAA plus BAP.In general, the callus growth was inhibited under the influence of CFM. In some of the experiments carried out in hormone-free media, growth stimulation was observed. Even minimal inhibition or stimulation of the callus growth was always accompanied by characteristic changes in the peroxidase patterns.The following results show the influence of the morphactin CFM on cytokinin effects (endogenous cytokinin or equally the exogenously applied cytokinin, BAP). (1) In the multiple bud cultures, BAP and CFM (both substances combined with IAA) similarly caused inhibition of root formation and stimulation of bud formation. The bands in the peroxidase patterns, characteristic of cytokinin action, were accentuated also of those bud cultures which had been treated with BAP or with CFM. (2) In the callus cultures, the cytokinin characteristics appeared under CFM influence in the peroxidase patterns of one of the tissue culture strains only when CFM was applied in combination with BAP and not in combinations of CFM with IAA.The observed morphactin-induced increase in the cytokinin effects could occur via changes in the hormone level of the tissue.  相似文献   

3.
We examined ethylene effects on root regeneration in tomato leaf discs cultured in vitro. Applied ethylene or Ethephon did not stimulate rooting in the leaf discs. In the presence of indoleacetic acid. 5 × 10-6M, these substances significantly inhibited root formation. Ethylene production (nl C2H4· (24 h)-1. flask-1) was positively correlated with increased IAA concentrations at various times during the culture period and, as a consequence, with the rooting response after 168 h. However, separate testing of equimolar concentrations of seven different auxins and auxin-like compounds showed no positive correlation between the rate of ethylene production and subsequent rooting response. Aeration of gas-tight flasks containing leaf discs and absorption of ethylene evolved from the discs by mercuric perchlorate in gas-tight flasks or pre-treatment of leaf discs with AgNO3 significantly enhanced IAA induced root regeneration. Thus, these studies indicate that ethylene is not a rooting hormone per se. Furthermore, ethylene (whether applied externally or synthesized by the tissue) does not appear to account for the ability of auxin to stimulate rooting.  相似文献   

4.
Leaf discs from olive (Olea europaea L.) grown in vitro and immature zygotic embryos collected at 50, 75, 90 and 105 days after full bloom were tested for their somatic embryogenic capacity. The embryos were grown in half-strength MS medium and half-strength OM medium with BAP combinated with either 2,4-D or NAA. Incubation was either in an initial dark period followed by 16h daylight or in 16h daylight throughout. Somatic embryogenesis, approx. 40%, mostly directly from the embryos, was observed only in 75-day-old embryos in medium containing low cytokinin and auxin concentrations. Differentiation was inhibited by 2,4-D whereas NAA did not. In leaf discs and younger and older zygotic embryos, only callus and root formation was observed. Somatic embryos were germinated and then potted-up to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphtaleneacetic acid  相似文献   

5.
With applied to the petioles of detached Begonia x cheimantha leaves before planting, Gibberellic acid (GA3) inhibited the formation of adventitious buds and roots ill an apparently irreversible manner. Bud formation was entirely suppressed by 10?6M and higher concentrations and a significant inhibition was still present at 10?9M the lowest concentration tested. Root formation was not affected by GA3 below 10?7M and was possible even at 10?4 M GA3. Petiole elongation was stimulated by GA3 with an optimum at 10?5M. GA3 also blocked the action of 6-benzyiamino-purine (BAP) and 1-naphthaleneacetic acid (NAA), compounds which are potent stimulators of bud and root formation, respectively. When applied simultaneously with GA3 they were, at their optimal concentrations, devoid of any effect in counteracting or reversing the gibberellin-induced inhibitions. Abscisic acid and the growth retardants CCC and Phosfon also were unable to restore bud and root formation. In leaves initially treated with water or 10?5M BAP, endogenous bud and root formation as well as BAP-induced bud formation were entirety suppressed when 10?5M GA3 was applied 8 days after the initial treatments. Even when delayed for 14 days GA3 treatment inhibited BAP-induced bud formation, while treatment after 21 days bad little effect on bud and root formation. Development of pre-existing, visible bud primordia was not inhibited by GA3. BAP and NAA competitively inhibited the action of GA3 in petiole extension growth. The results are discussed in relation to results obtained in other plant systems. It is suggested that GA3 acts by blocking of the organized cell divisions initiating the formation of bud and root primordia.  相似文献   

6.
Research in lateral root (LR) development mainly focuses on the role of auxin. This article reports the effect of cytokinins (kinetin and trans-zeatin) on LR formation in rice (Oryza sativa L.). Our results showed that cytokinin has an inhibitory effect on LR initiation and stimulatory effect on LR elongation. Both KIN and ZEA at a concentration of 1 microM and above completely inhibited lateral root primordium (LRP) formation. The inhibitory effect of cytokinin on LR initiation required a continuous presence of KIN or ZEA in the growth solution. Cytokinin did not show any inhibitory effect on LR emergence from the seminal root once LRPs had been formed. The LRPs that developed in cytokinin-free solution can emerge normally in the solution containing inhibitory concentration (1 microM) of KIN and ZEA. The KIN and ZEA treatment dramatically stimulated LR elongation at all the concentrations tested. Maximum LR elongation was observed at a concentration of 0.01 microM KIN and 0.001 microM ZEA. The epidermal cell length increased significantly in LRs of cytokinin treated seedlings compared to those of untreated control. This result indicates that the stimulation of LR elongation by cytokinin is due to increased cell length. Exogenously applied auxin counteracted the effect of cytokinin on LR initiation and LR elongation, suggesting that cytokinin acts on LR elongation through an auxin dependent pathway.  相似文献   

7.
The morphogenic response of somatic (leaf and petiole) and de-differentiated tissue (callus) of two blackberry (Rubus fruticosus) and one raspberry (Rubus idaeus) cultivars have been studied in vitro. With the aim to induce regeneration the effect of two sets of plant growth regulator (PGR) combinations (high cytokinin/auxin ratios and high auxin/cytokinin ratios) in Murashige and Skoog basal medium, were analysed. The three cultivars were characterised by a qualitatively different morphogenic response to the PGR combinations. Raspberry adventitious shoot regeneration from somatic tissue was improved by the 6-benzylaminopurine (BAP)/indol-3-butyric acid (IBA) combinations. On the contrary, shoot regeneration of both blackberry cultivars was reduced by high concentrations of BAP and completely inhibited by BAP/IBA combination. Media supplemented with high auxin/cytokinin ratios promoted callus production and root differentiation according to genotype and type of auxin. All the genotypes responded to media supplemented with IBA. 2,4-dichlorophenoxyacetic acid induced good callus formation in blackberry, but was toxic to raspberry. Indirect shoot formation was observed only in callus of blackberry cultivar Hull Thornless cultivated on medium with 10 μM BAP, the same concentration able to trigger efficient direct shoot regeneration from leaf explants of the same cultivar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Triiodobenzoic acid (TIBA), an anti-auxin, was found to inhibit both shoot and root formation in cultured excised leaf explants of tobacco (Nicotiana tabacum L.). The shoot formation (SF) medium used required only exogenous cytokinin (N6-benzyladenine) and the root formation (RF) medium required both auxin (indole-3-butyric acid) and cytokinin (kinetin). By transferring the explants from SF or RF media to SF or RF media with TIBA (4.0×10−5 M), respectively or vice versa, at different times in culture, it was found that TIBA inhibition was at the time of meristemoid formation and after determination of organogenesis. This indicates that TIBA interfered with endogenous auxin involvement in organized cell division.  相似文献   

9.
The calabrese cultivar Brassica oleracea var. italica cv. GreenComet was used in a study of the effects of exogenous hormoneson the growth and differentiation of seedling organs in vitro.Four types of explants were tested: hypocotyl segments, rootsegments, primary leaf discs and cotyledon discs. These explantswere incubated on media containing factorial combinations ofBAP x IBA, BAP x NAA, KN x IBA and KN x NAA (all at 0, 0.1,10 and 10.0mg l–1). Hypocotyls were the most regenerativeexplants; shoot production was favoured by cytokinin: auxinratios greater than one and was decreased by IBA at 10 mg l–1when callus was produced. Shoot formation from root explantsoccurred either in the absence of hormones or with low concentrations;no shoot was produced when any hormone was present at 10 mgl–1. In contrast, shoot production from primary leaf diseswas favoured by high concentrations of both auxin and cytokininwith the combination of BAP and IBA the most effective. Shootproduction from cotyledon discs was sporadic with no consistentresponse on any auxin/cytokinin combination. After further experimentson the optimization of hormone concentration, the followingcombinations were chosen as allowing reliable regeneration:0.1 mg l–1 BAP+0.1mg l–1 IBA for hypocotyl segments,0.075 mg l–1 KN +0.025 mg l–1 IBA for root segments,and 5.0 mg l–1 BAP+5.0 mg l–1 IBA for leaf discs. Brassica oleracea var. italica, calabrese, tissue culture, seedling, auxin, cytokinin  相似文献   

10.
Ola M.  Heide 《Physiologia plantarum》1969,22(5):1001-1012
Soil application of CCC reduced stem and leaf growth in Begonia plants. This effect was evident with all concentrations tested at 18°C, whereas at 21 and 24°C no growth–retarding effect was observed with 2 × 10?2 M CCC, and with 5 × 10?3 M growth was even stimulated. Flowering was promoted by CCC in long day and neur–critical temperature, particularly under low light intensity in the winter. The formation of adventitious buds in leaves of plants grown at 21 and 24°C was stimulated when the plants received 5 × 10?2 and 2 × 10?2 M CCC, while 8 7times; 10?2 M was inhibitory. In plants grown at 18°C bud formation was inhibited by all CCC concentrations. Root formation in the the leaves was usually stimulated by high CCC concentrations, while root elongation was reduced. The level of ether–extractable. acidic auxin (presumably IAA) in the leaves was lowered by CCC treatment of the plants, hut this required higher CCC concentrations at higt than at low temperature. When applied to detached leaves CCC stimulated bud formation at concentrations ranging from 10?4 to 10?2 M in leaves planted at 18 and 21°C. At 24°C budding was inhibited by 10?2 M CCC, the lower concentrations being stimulatory also at this temperature. Root formation and growth were not much affected by CCC treatment of the leaves, but increased with the temperature. Soil application of Phosfon (4 × 10?4 M) had no effect on growth and flowering, nov did it affect the subsequent regeneration of buds and roots in the leaves. In detached leaves Phosfon stimulated bud formation with au optimum at 10?6 M. Root formation was stimulated by Phosfon at all temperatures, the optimal concentration being 10?5 M, whereas root length was conversely affected. Foliar application of B-995 to intact plants and treatment of detached leaves greatly inhibited the formation of buds and had little effect on root formation. B-99D reduced the growth and delayed flowering in the plants.  相似文献   

11.
Auxin acts synergistically with cytokinin to control the shoot stem‐cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress‐induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al‐induced auxin signaling. Al stress triggers a local cytokinin response in the root‐apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up‐regulated specifically in the root‐apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum‐induced root growth inhibition in Arabidopsis.  相似文献   

12.
Nebularine is known for its high cytotoxicity in animals, whereas in plants it was originally believed to be an anticytokinin. In this study we show that in classical cytokinin bioassays, nebularine antagonized cytokinin function in senescence and callus biotests but not in the Amaranthus bioassay. Nebularine reversed the inhibitory effect of cytokinin on lateral root formation in Arabidopsis seedlings, and when applied alone caused increased lateral root formation and shortening of the main root. Systematic spraying of Arabidopsis plants with nebularine led to yellowing and formation of purple pigments, local drying, and withering, although younger plants showed a greater resilience. Comparison of nebularine cytotoxicity in plant and animal cells showed that the growth of tobacco BY-2 cells was inhibited with only about tenfold lower efficacy than mammalian cell lines. Most importantly, direct binding assay with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 showed that nebularine did not compete for binding with the natural cytokinin trans-zeatin. Although nebularine reduced cytokinin-induced expression of the cytokinin reporter ARR5:GUS in planta, the same effect was observed for DR5:GUS, an auxin reporter gene. Taken together, the results indicate that the mode of action of nebularine does not involve cytokinin signaling and that the anticytokinin-like effect is rather a consequence of the inhibition of various processes as described for animal systems.  相似文献   

13.
A regeneration and transformation protocol for ramie (Boehmeria nivea Gaud.) is presented. Regeneration was obtained from leaf discs placed on solid B-5 medium (Gamborg et al. 1968) containing adequate concentrations of auxin and cytokinin. Co-cultivation of leaf discs with Agrobacterium tumefaciens and subsequent regeneration resulted in transgenic plants as shown by Southern blot and analysis of expression of the GUS-marker gene.  相似文献   

14.
Possible Involvement of Cytokinin in Nitrate-mediated Root Growth in Maize   总被引:1,自引:1,他引:0  
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrate can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Nevertheless, less is known about the physiological mechanisms. In the present study, two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study a possible role of cytokinin in nitrate-mediated root growth in nutrient solutions. Root elongation of 478 was more sensitive to high nitrate supply than that of Wu312. Medium high nitrate (5 mM) inhibited root elongation in 478, while, root elongation in Wu312 was only inhibited at high NO 3 supply (20 mM). Under high nitrate supply, the root elongation zone in 478 became swollen and the site of lateral root elongation was close towards the root tip. Both of the phenomena are typical of root growth induced by exogenous cytokinin treatments. Correspondingly, zeatin and zeatin nucleotide (Z + ZR) concentrations were increased at higher nitrate supply in 478, whereas they were constant in Wu312. Furthermore, exogenous cytokinin 6-benzylaminopurine (6-BA) completely reversed the stimulatory effect of low nitrate on root elongation. Therefore, it is supposed that the inhibitory effect of high concentration of nitrate on root elongation is, at least in part, mediated by increased cytokinin level in roots. High nitrate supply may have negative influences on root apex activity by affecting cytokinin metabolism so that root apical dominance is weakened and, therefore, root elongation is suppressed and lateral roots grow closer to the root apex. Nitrate suppressed lateral root elongation in Wu312 at concentration higher than 5 mM. In 478, however, this phenomenon was not significant even at 20 mM nitrate. Although exogenous 6-BA (20 nM) could suppress lateral root elongation as well, the inhibitory effect of high NO 3 concentration of nitrate on lateral root growth cannot be explained by changes in endogenous cytokinin alone.  相似文献   

15.
J. B. Fisher 《Planta》1971,97(3):257-268
Summary The axillary buds in the leaf crown of Cyperus alternifolius seedlings remain completely inhibited although the shoot is determinate and has no active apex. Buds can be released by detachment of the crown from the plant or by direct application of aqueous enzyladenine (BA), and grow out as inflorescences or vegetative shoots. These arise from activated growth centers of the primordial reproductive branch system which is enclosed within the prophyll of the inhibited bud. Buds are also released by the growth retardant, (2-chloroethyl) trimethylammonium chloride (CCC). Gibberellic acid maintains bud inhibition in detached crowns and inhibits bud release caused by CCC or BA. Naphthaleneacetic acid somewhat reduces BA-induced bud release and causes abnormal root proliferation in CCC-treated crowns. It is suggested that a high level of gibberellin within the crown, possibly in relation to a low level of cytokinin, maintains bud inhibition.  相似文献   

16.
The hormonal regulation of axillary bud growth in Arabidopsis   总被引:11,自引:0,他引:11  
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant Arabidopsis. The assay allows study of the effects of both apical and basal hormone applications on the growth of buds on excised nodal sections. We have shown that apical auxin can inhibit the growth of small buds, but larger buds were found to have lost competence to respond. We have used the assay with nodes from wild-type and hormone-signalling mutants to test the role of ethylene, cytokinin and abscisic acid in bud inhibition by apical auxin. Our data eliminate ethylene as a second messenger for auxin-mediated bud inhibition. Similarly, abscisic acid signalling is not to be required for auxin action, although basally applied abscisic can enhance inhibition by apical auxin and apically applied abscisic acid can reduce it. By contrast, basally applied cytokinin was found to release lateral buds from inhibition by apical auxin, while apically applied cytokinin dramatically increased the duration of inhibition. These results are consistent with cytokinin acting independently to regulate bud growth, rather than as a second messenger for auxin. However, in the absence of cytokinin-signalling mutants, a role for cytokinin as a second messenger for auxin cannot be ruled out.  相似文献   

17.
以野生型拟南芥(WT)及其生长素和乙烯不敏感型突变体(aux1-7、axr1-3、etr1-1和etr1-3)为实验材料,采用固体培养法研究了高浓度硝酸铵对根毛发育的影响,以揭示其调控根毛发育的机制。结果表明:(1)随着外源硝酸铵浓度的逐渐增加,拟南芥根毛伸长受阻,产生大量的分叉根毛。(2)高浓度硝酸铵条件下,外源活性氧或活性氧产生抑制剂二苯基氯化碘(DPI)的添加能抑制高浓度硝酸铵诱导的分叉根毛产生。(3)高浓度硝酸铵条件下,外源生长素或乙烯合成前体物质1-氨基-环丙烷-1-羧酸(ACC)处理能恢复根毛的正常生长,解除高浓度硝酸铵诱导根毛分叉现象。(4)高浓度硝酸铵条件下,外源生长素处理乙烯不敏感型突变体或ACC处理生长素不敏感型突变体均能抑制突变体分叉根毛的形成。研究表明,活性氧、生长素和乙烯都参与了高浓度硝酸铵对根毛发育的过程调控;在硝酸铵诱导的根毛分叉中生长素和乙烯存在相互作用,在缺乏生长素信号通路时,乙烯能够发挥补充作用抑制分叉根毛的产生;在缺乏乙烯信号通路时,生长素也可以弥补缺失乙烯的作用抑制根毛的分叉,但是需要更高浓度的生长素才能充分抑制分叉根毛的产生。  相似文献   

18.
The dual effects of auxin and ethylene on rice seminal root growth were investigated in this study. Low concentrations of exogenous indole-3-acetic acid (IAA) had no effect on rice seminal root growth, whereas higher concentrations (≥0.003 μM) were inhibitory. In contrast, low concentrations of the auxin action inhibitor p-chlorophenoxyisobutyric acid (PCIB), ranging from 0.5 to 50 μM, promoted rice seminal root growth, whereas high concentrations of PCIB (≥500 μM) and the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibited rice seminal root growth. These results suggest that endogenous auxin is required but supraoptimal for rapid growth of rice seminal roots. In addition, although rice seminal root growth was inhibited by the exogenous ethylene-releasing compound ethephon or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as well as exogenous IAA, the 50% inhibition of growth (I50) caused by ethephon or ACC was weakened by certain concentrations of the ethylene action inhibitor Ag+ (0.016-0.4 μM). However, the I50 caused by exogenous IAA was strengthened by Ag+ or the ethylene biosynthetic inhibitor aminoethoxyvinylglycine (AVG) and weakened by certain concentrations of PCIB (0.5-50 μM). Together, the inhibitory mechanisms of auxin and ethylene on rice seminal root growth should be different, and auxin inhibition of rice seminal root growth should not be caused by ethylene. Furthermore, our results indicated that a certain threshold level of ethylene was required to maintain rice seminal root growth, and that ethylene within the threshold may antagonize auxin inhibition of rice seminal root growth.  相似文献   

19.

We elucidated the effect of increased planting density (single and grouped competing plants) on concentrations of auxin, abscisic acid, and cytokinins in normal lettuce plants and in those with ethylene perception inhibited by 1-methylcyclopropene (1-MCP). An attempt was made to relate the changes in hormone concentration induced by competition and inhibition of ethylene sensitivity to growth responses of lettuce planting. The results showed changes in concentrations of auxins, cytokinins, and ABA in the response of lettuce to crowding. Accumulation of ABA in shoots was likely to contribute to inhibition of transpiration of the plants grown in the presence of neighbors. This assumption was supported by the results of application of an inhibitor of ABA synthesis (fluridone and carotenoid biosynthesis herbicide) resulting in increased transpiration of grouped, but not single plants. Increased planting density led to the decline in root auxins paralleled by inhibition of root growth. This effect was likely to be due to decreased auxin transport to the roots from the shoots suggested by accumulation of auxins in the shoots and inhibition of root growth by application of the auxin transport inhibitor [N-(1-naphtyl)phtalamic acid (NPA)]. Importance of the changes in hormone concentrations was confirmed by data showing that disturbance of auxin and cytokinin distribution detected in MCP-treated plants was accompanied by corresponding modification of the growth response.

  相似文献   

20.
In vitro flower bud initiation and development depend on the presence of two hormones in the culture medium—auxin (NAA) and cytokinin (BAP). The uptake of both NAA and BAP by the explants was shown to be proportional to the concentrations supplied in the medium over a period of 4 days after the onset of culture. However, when supplied at equal concentrations for 24 h, the NAA uptake was up to 10-fold higher than the BAP uptake. Both hormones are rapidly metabolized by the explants. Nevertheless, the concentrations of free hormones inside the explants appeared to be high and in the case of NAA exceeded the concentration in the medium by more than 1 order of magnitude within 24 h. Apparently flower bud initiation in tobacco explants requires relatively high concentrations free NAA and BAP in the tissue maintained by a continuous supply in the medium. There are at present no indications that the products of hormone metabolism are directly involved in bud formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号