首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule and centrosome distribution during sheep fertilization   总被引:3,自引:0,他引:3  
The distribution of microtubules and centrosomes was studied during sheep fertilization by electron and immunofluorescence microscopy. Tubulin and centrosomal material was identified with monoclonal anti-alpha-tubulin and MPM-2 antibodies, respectively. In ovulated eggs, microtubules were exclusively found in the meiotic spindle and centrosomal material at each of its poles. At fertilization, sperm centrosomes were incorporated into the egg and organized the sperm astral microtubules. During pronuclear development and migration, the sperm aster increased in size; microtubules of the sperm aster extended from the male pronucleus to the egg center and towards the female pronucleus. The position of the sperm aster during pronuclear migration suggests that it plays a role in this process. When the pronuclei were in apposition in the egg center, a dense array of microtubules and the centrosomal material were present between the two pronuclei. The proximal centriole of the sperm was identified by electron microscopy, between the apposed pronuclei. The centrosomal material extending around the centriole and the sperm neck and proximal mid-piece, apparently contained several foci from which microtubules radiated. These data suggest that in sheep unlike in mice, centrosomal material originating from the sperm is involved in the fertilization events.  相似文献   

2.
《The Journal of cell biology》1995,129(6):1447-1458
Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, we were surprised to find that when pronuclear fusion in sea urchin zygotes is blocked with Colcemid, the female pronucleus consistently breaks down before the male pronucleus. This is not due to regional differences in the time of MPF activation, because pronuclei touching each other break down asynchronously to the same extent. To test whether NEB is controlled at the nuclear or cytoplasmic level, we activated the checkpoint for the completion of DNA synthesis separately in female and male pronuclei by treating either eggs or sperm before fertilization with psoralen to covalently cross-link base-paired strands of DNA. When only the maternal DNA is cross-linked, the male pronucleus breaks down first. When the sperm DNA is cross-linked, male pronuclear breakdown is substantially delayed relative to female pronuclear breakdown and sometimes does not occur. Inactivation of the Colcemid after female NEB in such zygotes with touching pronuclei yields a functional spindle composed of maternal chromosomes and paternal centrosomes. The intact male pronucleus remains located at one aster throughout mitosis. In other experiments, when psoralen-treated sperm nuclei, over 90% of the zygote nuclei do not break down for at least 2 h after the controls even though H1 histone kinase activity gradually rises close to, or higher than, control mitotic levels. The same is true for normal zygotes treated with aphidicolin to block DNA synthesis. From these results, we conclude that NEB in sea urchin zygotes is controlled at the nuclear, not cytoplasmic, level, and that mitotic levels of cytoplasmic MPF activity are not sufficient to drive NEB for a nucleus that is under checkpoint control. Our results also demonstrate that the checkpoint for the completion of DNA synthesis inhibits NEB by acting primarily within the nucleus, not by downregulating the activity of cytoplasmic MPF.  相似文献   

3.
The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilisation. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8-9 h following the injection of porcine sperm, and 6-8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte centre. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. Ultrastructural observation revealed that male pronuclei derived from murine sperm in porcine oocytes are morphologically similar to normal male pronuclei in porcine zygotes. These results suggest that species-specific paternal factors influence the onset of pronucleus formation and DNA synthesis. However, normal nuclear cytoplasmic interactions were observed in porcine S-phase oocytes following murine sperm injection.  相似文献   

4.
The distribution of microtubules was studied during fertilization of the rabbit oocyte by immunofluorescence microscopy after staining with an anti-alpha-tubulin antibody. In ovulated oocytes, microtubules were found exclusively in the meiotic spindle. At fertilization, the paternal centrosome generated sperm astral microtubules. During pronuclear development, the sperm aster increased in size, and microtubules extended from the male pronucleus to the egg center and towards the female pronucleus. These observations indicate that microtubules emanating from the sperm centrosome were involved in the movements leading to the union of the male and female pronuclei. At late pronuclear stage, microtubules surrounded the adjacent pronuclei. The mitotic spindle that emerged from the perinuclear microtubules contained broad anastral poles.  相似文献   

5.
We determined the incidence of activation, male pronuclear formation, and apposition of pronuclei in porcine oocytes following intracytoplasmic injection of various porcine sperm components and foreign species spermatozoa, such as that of cattle, mouse or human. The porcine oocytes were activated by injection of a spermatozoon or an isolated sperm head. In contrast, injection of either sperm tail or a trypsin- or NaOH-treated sperm head failed to induce oocyte activation. Because injection of mouse, bovine, or human spermatozoon activated porcine oocytes, the sperm-borne activation factor(s) is not strictly species-specific. Male pronuclear formation and pronuclear apposition were observed in porcine oocytes following injection of porcine, bovine, mouse or human spermatozoa. Electrical stimulation following sperm cell injection did not enhance the incidence of male pronuclear formation or pronuclear apposition compared with sperm cell injection alone (P > 0.1). Following porcine sperm injection, the microtubular aster was organized from the neck of the spermatozoon, and filled the whole cytoplasm. In contrast, following injection of bovine, mouse, or human spermatozoon, the maternal-derived microtubules were organized from the cortex to the center of the oocytes, which seems to move both pronuclei to the center of oocytes. Cleavage to the two-cell stage was observed at 19-21 hr after injection of porcine spermatozoon. However, none of the oocytes following injection of mouse, bovine, or human spermatozoa developed to the mitotic metaphase or the two-cell stage. These results suggested that the oocyte activating factor(s) is present in the perinuclear material and that it is not species-specific for the porcine oocyte. Self-organized microtubules seemed to move the pronuclei into center of oocytes when foreign species spermatozoa were injected into porcine oocytes.  相似文献   

6.
Microtubule organization and chromatin configurations in rabbit eggs after in vivo rabbit fertilization and after intracytoplasmic injection with human sperm were characterized. In unfertilized eggs, an anastral barrel-shaped meiotic spindle, oriented radially to the cortex, was observed. After rabbit sperm incorporation, microtubules were organized into a radial aster from the sperm head, and cytoplasmic microtubules were organized around the male and female pronuclei. The microtubules extending from the decondensed sperm head participated in pronuclear migration, and organization around the female pronucleus may also be important for pronuclear centration. Support for these observations was found in parthenogenetically activated eggs, in which microtubule arrays were organized around the single female pronucleus that formed after artificial activation. These observations support a biparental centrosomal contribution during rabbit fertilization as opposed to a strictly paternal inheritance pattern suggested from previous studies. In rabbit eggs that received injected human donor sperm, an astral array of microtubules radiated from the sperm neck and enlarged as the sperm head underwent pronuclear decondensation. gamma-Tubulin was observed in the center of the sperm aster. We conclude that the rabbit egg exhibits a blended centrosomal contribution necessary for completion of fertilization and that the rabbit egg may be a novel animal model for assessing centrosomal function in human sperm and spermatogenic cells following intracytoplasmic injection.  相似文献   

7.
Anti-tubulin immunofluorescence microscopy is used here to demonstrate the configurations of the microtubule-containing structures which participate in the pronuclear movements of sea urchin fertilization. This technique shows that the egg is devoid of microtubules until after the fertilizing sperm is fully incorporated. All the microtubules which appear during the course of fertilization are organized around the base of the sperm head and the sperm aster thus formed behaves in a way that could account for the characteristic motions of the male and female pronuclei as documented by time-lapse video microscopy. Extension of astral microtubules appears to be responsible for the slow (ca. 2.5 μm min?1) movement of the sperm aster into the cytoplasm of the egg; the rapid (ca. 15 μm min?1) migration of the female pronucleus to the sperm aster seems to depend on connection of the female pronucleus to microtubules of the sperm aster. Continued extension of astral microtubules after the pronuclei are brought into conjunction can account for the centripetal motion of the paired (or fused) pronuclei and for the positioning of the zygote nucleus in the center of the egg. The behavior of astral microtubules during these motions suggests that they are capable of transmitting both pushing and pulling forces. All the pronuclear movements, and the assembly of detectable microtubules, are sensitive to the microtubule inhibitors griseofulvin and colchicine. Because of this sensitivity, and since all the observable microtubules within the egg during fertilization arise at the sperm aster, it is concluded that the pronuclear movements of fertilization result from the actions of the sperm aster. The pronuclear movements of sea urchin fertilization represent a simple but striking example of microtubule-mediated motility.  相似文献   

8.
A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein.  相似文献   

9.
Studies examining cytoplasmic and sperm nuclear transformations in sea urchin (Arbacia punctulata) eggs inseminated at different periods after ammonia activation have been caried out at the light- and electron-microscopic levels of observation. Arbaca eggs treated with ammonia-seawater demonstrated chromosome condensation after DNA synthesis and underwent a chromosome cycle similar to that described for Lytechinus [Mazia, 1947]. Cortical granule reaction, fertilization cone formation, and sperm aster development in eggs fertilized at 20 (interphase), 50 (prometaphase), and 180 (interphase) min after ammonia activation were structurally simialr to processes in untreated zygotes. Cyclical changes in the formation of fertilization cones and sperm asters, as reported for eggs fertilized after activation by agents that induce a cortical granule reaction, were not observed. Although sperm nuclear transformations were prolonged (14 vs 18 min), male pronuclei that developed in eggs fertilized 20 min after ammonia activation were morphologically similar to those observed in fertilized, untreated ova and incorporated 3H-thymidine. Sperm incorporated into eggs at 50 min after ammonia activation underwent nuclear envelope breakdown and chromatin despersion; however, 3H-thymidine incorporation was not observed, and male pronuclei rarely developed (less than 5% of all specimens examined). Subsequent to dispersion, the paternal chromatin condensed into chromosomes which were associated with an aster. These results demonstrate that although ammonia-activated eggs inseminated at interphase or prometaphase undergo similar cytoplasmic alterations, sperm nuclear transformations vary with the chromosome cycle of the egg.  相似文献   

10.
To prevent duplicate DNA synthesis, metazoan replication origins are licensed during G1. Only licensed origins can initiate replication, and the cytoplasm interacts with the nucleus to inhibit new licensing during S phase. DNA replication in the mammalian one‐cell embryo is unique because it occurs in two separate pronuclei within the same cytoplasm. Here, we first tested how long after activation the oocyte can continue to support licensing. Because sperm chromatin is licensed de novo after fertilization, the timing of sperm injection can be used to assay licensing initiation. To experimentally skip some of the steps of sperm decondensation, we injected mouse sperm halos into parthenogenetically activated oocytes. We found that de novo licensing was possible for up to 3 h after oocyte activation, and as early as 4 h before DNA replication began. We also found that the oocyte cytoplasm could support asynchronous initiation of DNA synthesis in the two pronuclei with a difference of at least 2 h. We next tested how tightly the oocyte cytoplasm regulates DNA synthesis by transferring paternal pronuclei from zygotes generated by intracytoplasmic sperm injection (ICSI) into parthenogenetically activated oocytes. The pronuclei from G1 phase zygotes transferred into S phase ooplasm were not induced to prematurely replicate and paternal pronuclei from S phase zygotes transferred into G phase ooplasm continued replication. These data suggest that the one‐cell embryo can be an important model for understanding the regulation of DNA synthesis. J. Cell. Biochem. 107: 214–223, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.  相似文献   

12.
We recently demonstrated that mouse spermatozoa contain a mechanism to degrade their DNA into loop-sized fragments of about 50 kb, mediated by topoisomerase IIB, termed sperm chromatin fragmentation (SCF). SCF is often followed by a more complete digestion of the DNA with a sperm nuclease. When SCF-induced spermatozoa are injected into oocytes, the paternal pronuclei degrade their DNA after the initiation of DNA synthesis, but the maternal pronuclei are unaffected and replicate normally. Here, we tested whether the nuclease activity changes in spermatozoa of different maturation stages, and whether there is a functional relationship between the initiation of DNA synthesis and paternal DNA degradation induced by SCF in the zygote. We found that spermatozoa from the vas deferens have a much higher level of SCF activity than those from the cauda epididymis, suggesting that spermatozoa may acquire this activity in the vas deferens. Furthermore, paternal pronuclei formed in zygotes from injecting oocytes with SCF-induced vas deferens spermatozoa degraded their DNA, but this degradation could be inhibited by the DNA synthesis inhibitor, aphidicolin. Upon release from a 4 h aphidicolin-induced arrest, DNA synthesis was initiated in maternal pronuclei, while the paternal pronuclei degraded their DNA. Longer aphidicolin arrest resulted in the paternal pronuclei replicating their DNA, suggesting that delaying the initiation of DNA synthesis allowed the paternal pronuclei to overcome the SCF-induced DNA degradation pathway. These results suggest that the paternal DNA degradation, in oocytes fertilized with SCF-induced spermatozoa, is coupled to the initiation of DNA synthesis in newly fertilized zygotes.  相似文献   

13.
Terada Y 《Human cell》2004,17(4):181-186
In human fertilization, the sperm introduces the centrosome-the microtubule organizing center-and microtubules are organized within the inseminated egg from the sperm centrosome. These microtubules form a radial array, the sperm aster, the functioning of which is essential for pronuclear movement for the union of the male and female genomes. We established functional assay for human sperm centrosomal function, by using heterologus ICSI system with bovine and rabbit eggs. After human sperm incorporation into mammalian egg, we observed that the sperm aster was organized from sperm centrosome, and the sperm aster enlarged as the sperm nuclei underwent pronuclear formation. The normal human sperm aster formation rate at 6 h post-ICSI were 60.0% in bovine egg and 36.1% in rabbit egg, respectively. However, sperm aster formation rate following heterologus ICSI into bovine eggs with teratozoospermia (globozoospermia, dysplasia of fibrous sheath) were low. These data indicate that human sperm centrosomal function is low in abnormal shaped sperm. Wherus, elucidation of human sperm centrosomal function can lead us to find a new type of failure in "post ICSI events in fertilization".  相似文献   

14.
It has been demonstrated that in the zygotes of some mammals a unique checkpoint controls the onset of DNA replication. Thus, DNA replication begins in the maternal pronucleus only after the paternal pronucleus is fully formed. In our experiments we have investigated whether this checkpoint also operates in porcine zygotes produced either by in vitro fertilization (IVF) or by intracytoplasmic sperm injection (ICSI). Our results show that the onset of DNA replication occurs in the maternal pronucleus even in the presence of an intact sperm head in zygotes produced by ICSI, as well as in polyspermic eggs where some sperm heads are intact or male pronuclei are not yet fully developed. We conclude that in porcine zygotes there is an absence of the DNA replication checkpoint that is typical for some other mammals.  相似文献   

15.
Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.  相似文献   

16.
We demonstrated normal fertilization processes (as determined by pronuclear formation, pronuclear apposition and syngamy) in porcine oocytes either following intracytoplasmic spermatozoon (ICSI) or isolated sperm head injection. Microtubule organization and chromatin configuration were investigated in these oocytes during the first cell cycle. Following ICSI, the microtubular aster was organized from the neck of the spermatozoon and filled the whole cytoplasm. These male-derived microtubules appear to move both pronuclei to the center of oocytes. These cytoskeletal changes are analogous to those seen following conventional fertilization. In contrast, following isolated sperm head injection, the sperm aster was not seen. Instead, the microtubule matrix was organized from the cortex and then filled the whole cytoplasm in all cases in normally fertilized oocytes following injection (n = 35). This organization is similar to what has been shown in the parthenogenetically activated oocytes. Chromosome analysis revealed that the oocytes injected with isolated sperm heads were fertilized normally. At 7 days following injection, the incidence of blastocoele formation following ICSI (38%) and isolated sperm head injection (22%) was higher than that following sham injection (2%). These results suggested that successful fertilization and preimplantation development occurred in porcine oocytes following either ICSI or isolated sperm head injection. Our results also indicated that fertilization processes can occur by self-assembled microtubules within cytoplasm in the absence of a sperm centrosome. Mol. Reprod. Dev. 51:436–444, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
To assess the role of the availability of sperm nuclear templates in the regulation of DNA synthesis, we correlated the morphological status of the fertilizing hamster sperm nucleus with its ability to synthesize DNA after in vivo and in vitro fertilization. Fertilized hamster eggs were incubated in 3H-thymidine for varying periods before autoradiography. None of the decondensed sperm nuclei nor early (Stage I) male pronuclei present after in vivo or in vitro fertilization showed incorporation of label, even in polyspermic eggs in which more advanced pronuclei were labeled. In contrast, medium-to-large pronuclei (mature Stage II pronuclei) consistently incorporated 3H-thymidine. To investigate the contribution of egg cytoplasmic factors to the regulation of DNA synthesis, we examined the timing of DNA synthesis by microinjected sperm nuclei in eggs in which sperm nuclear decondensation and male pronucleus formation were accelerated experimentally by manipulation of sperm nuclear disulfide bond content. Although sperm nuclei with few or no disulfide bonds decondense and form male pronuclei faster than nuclei rich in disulfide bonds, the onset of DNA synthesis was not advanced. We conclude the the fertilizing sperm nucleus does not become available to serve as a template for DNA synthesis until it has developed into a mature Stage II pronucleus, and that, as with decondensation and pronucleus formation, DNA synthesis also depends upon egg cytoplasmic factors.  相似文献   

18.
Experiments were carried out in order to investigate the onset of DNA synthesis and its possible relation to pronuclear morphogenesis prior to, during, and following pronuclear fusion in the sea urchin, Arbacia punctulata. Analysis of the acid-soluble radioactivity of zygotes continuously incubated in tritiated thymidine (3H-TdR) at 22°C demonstrated the production of thymidine triphosphate prior to and during pronuclear migration (5–10 min post-insemination) which continued to increase until prophase (about 45 min post-insemination). DNA synthesis was initiated subsequent to pronuclear fusion, i.e., 15–20 min post-insemination. Little or no cytoplasmic label was detected during fertilization. Silver grains were first detected over the zygote nucleus in sections prepared for light and electron microscopic radioautography from zygotes fixed at 18 min post-insemination. Incubation of Arbacia zygotes at 12°C dramatically slowed development but did not alter the temporal relation between pronuclear fusion and DNA synthesis. Radioautographs of polyspermic zygotes demonstrated that unfused male pronuclei were able to synthesize DNA and substantiate the claim that pronuclear fusion is not required for the initiation of DNA synthesis. Analysis of autoradiographs of artificially activated eggs also lead to the same conclusion. Uptake of 3H-TdR or 3H-bromodeoxyuridine was not found in spermatozoa incorporated into polyspermic oocytes regardless of whether or not they had initiated or developed into male pronuclei. It is concluded that the relation between DNA synthesis and pronuclear fusion is not close or a direct one, i.e., pronuclear fusion does not appear to be a prerequisite for the onset of DNA synthesis in Arbacia.  相似文献   

19.
Genomic DNA damage in mouse transgenesis   总被引:2,自引:0,他引:2  
Creating transgenic mammals is currently a very inefficient process. In addition to problems with transgene integration and unpredictable expression patterns of the inserted gene, embryo loss occurs at various developmental stages. In the present study, we demonstrate that this loss is due to chromosomal damage. We examined the integrity of chromosomes in embryos produced by microinjection of pronuclei, intracytoplasmic sperm injection (ICSI), and in vitro fertilization (IVF)-mediated transgenesis, and correlated these findings with the abilities of embryos to develop in vitro and yield transgenic morulas/blastocysts. Chromosomal analysis was performed after microinjection of the pronuclei in zygotes, as well as in parthenogenetic and androgenetic embryos. In all the pronuclei injection groups, significant oocyte arrest and increased incidence of chromosome breaks were observed after both transgenic DNA injection and sham injection. This indicates that the DNA damage is a transgene-independent effect. In ICSI-mediated transgenesis, there was no significant oocyte arrest. The observed chromosomal damage was lower than that after pronuclei microinjection in zygotes and was dependent upon the presence of exogenous DNA. The occurrence of DNA breaks, as measured by comet assay performed on the sperm prior to ICSI, showed that DNA damage was present in the sperm before fertilization. Embryonic development in vitro and transgene expression at the morula/blastocyst stage were higher in ICSI-mediated transgenesis than after microinjection of pronuclei into zygotes. Sperm-mediated gene transfer via IVF did not affect chromosome integrity, allowed good embryo development, but did not yield any transgenic embryos. The present study demonstrates that DNA damage occurs after both the microinjection of pronuclei and ICSI-mediated transgenesis, albeit through different mechanisms.  相似文献   

20.
One difficulty in analyzing the damage response is that the effect of damage itself and that of cellular response are hard to distinguish in irradiated cells. In mouse zygotes, damage can be introduced by irradiated sperm, while damage response can be studied in the unirradiated maternal pronucleus. We have analyzed the p53-dependent damage responses in irradiated-sperm mouse zygotes and found that a p53-responsive reporter was efficiently activated in the female pronucleus. [(3)H]thymidine labeling experiments indicated that irradiated-sperm zygotes were devoid of G(1)/S arrest, but pronuclear DNA synthesis was suppressed equally in male and female pronuclei. p53(-/-) zygotes lacked this suppression, which was corrected by microinjection of glutathione S-transferase-p53 fusion protein. In contrast, p21(-/-) zygotes exhibited the same level of suppression upon fertilization by irradiated sperm. About a half of the 6-Gy-irradiated-sperm zygotes managed to synthesize a full DNA content by prolonging S phase, while the other half failed to do so. Regardless of the DNA content, all the zygotes cleaved to become two-cell-stage embryos. These results revealed the presence of p53-dependent pronuclear cross talk and a novel function of p53 in the S-phase DNA damage checkpoint of mouse zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号