首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Phosphoinositide 3-kinase (PI3K) plays an important role in platelet function and contributes to platelet hyperreactivity induced by elevated levels of circulating peptide hormones, including thrombopoietin (TPO). Previous work established an important role for the PI3K isoform; p110β in platelet function, however the role of p110α is still largely unexplored. Here we sought to investigate the role of p110α in TPO-mediated hyperactivity by using a conditional p110α knockout (KO) murine model in conjunction with platelet functional assays. We found that TPO-mediated enhancement of collagen-related peptide (CRP-XL)-induced platelet aggregation and adenosine triphosphate (ATP) secretion were significantly increased in p110α KO platelets. Furthermore, TPO-mediated enhancement of thrombus formation by p110α KO platelets was elevated over wild-type (WT) platelets, suggesting that p110α negatively regulates TPO-mediated priming of platelet function. The enhancements were not due to increased flow through the PI3K pathway as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) formation and phosphorylation of Akt and glycogen synthase kinase 3 (GSK3) were comparable between WT and p110α KO platelets. In contrast, extracellular responsive kinase (ERK) phosphorylation and thromboxane (TxA2) formation were significantly enhanced in p110α KO platelets, both of which were blocked by the MEK inhibitor PD184352, whereas the p38 MAPK inhibitor VX-702 and p110α inhibitor PIK-75 had no effect. Acetylsalicylic acid (ASA) blocked the enhancement of thrombus formation by TPO in both WT and p110α KO mice. Together, these results demonstrate that p110α negatively regulates TPO-mediated enhancement of platelet function by restricting ERK phosphorylation and TxA2 synthesis in a manner independent of its kinase activity.  相似文献   

5.
6.
7.
8.
9.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

10.
11.
12.
13.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

14.
Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in submucosal glands and alveolar epithelial cells in the lungs. Recent studies have revealed that AQPs regulate not only water metabolism, but also some cellular functions such as cell growth and migration. Here, we report the role of AQP5 in inflammatory responses. In MLE-12 cells, knockdown of AQP5 using siRNA (10–50 nM) attenuated TNF-α-induced expression of keratinocyte chemoattractant (KC) mRNA and protein. Conversely, in NIH-3T3 cells, overexpression of AQP5 increased KC expression, NF-κB activation, and ERK phosphorylation. The AQP5-induced increase of KC expression was diminished by treatment with ERK inhibitors. Taken together, we propose a new function of AQP5 as an inflammatory signal potentiator, which may be mediated by increased activation of ERK and NF-κB.  相似文献   

15.
16.
17.
18.
19.
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide with elusive molecular mechanisms. The aim of this study is to investigate the clinical significance and biological roles of breast cancer-associated protein 3 (BCA3) in HCC. Our investigation demonstrated that BCA3 expression was up-regulated in primary HCC tissues, and BCA3 levels were positively correlated with tumor size, TNM stage, microvascular invasion and poor prognosis. BCA3 promoted tumor growth, metastasis and angiogenesis of HCC in vitro and in vivo. Moreover, we found that BCA3 induced aggressive behaviors were mediated by AKT activation, which in turn activated mTOR signalling pathway and induced cytoplasm-nuclear translocation of NF-κB p65. Blockage of AKT signalling pathway by a specific AKT inhibitor LY294002 impaired BCA3 mediated phenotypes. Collectively, our current study indicated the pleiotropic effects of BCA3 in HCC progression, and blockage of BCA3-AKT pathway might contribute to development of therapeutic measures for HCC.  相似文献   

20.
The present study was performed to investigate the effect of quercetin on nasopharyngeal carcinoma (NPC) angiogenesis. The real-time RT-PCR and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the expression levels of vascular endothelial growth factor (VEGF) in nasopharyngeal carcinoma cell lines prior to and after the quercetin treatment. Effect of quercetin on the rate of cell proliferation was measured by MTT assay. It was observed that quercetin treatment at a concentration of 10 mg/mL reduced the rate of NPC039 cell viability to 36% compared to control after 24 h. The expression of VEGF and activity of NF-κB was also markedly reduced. The ability of tube formation in HUVECs was inhibited significantly on exposure to quercetin compared to the untreated cells. Therefore, quercetin plays an important role in the inhibition of NPC039 nasopharyngeal carcinoma and can be of therapeutic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号