首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Rusak 《Federation proceedings》1979,38(12):2589-2595
The identification of a direct retinohypothalamic tract (RHT) terminating in the supra-chiasmatic nuclei (SCN) has focused attention on the role of these structures in the entrainment and generation of circadian rhythms in mammals. Light effects on circadian rhythms are mediated by both the RHT and portions of the classical visual system. The complex interactions of these systems are reflected both in their direct anatomical connections and in the functional changes in entrainment produced by interruption of either set of projections. Destruction of the RHT/SCN eliminated both normal entrainment and normal free-running circadian rhythms. No circadian rhythms has survived SCN ablation in rodents, but a variety of non-circadian cycles can be generated by lesioned animals. The complex behavioral patterns produced by SCN-lesioned hamsters suggest that circadian oscillators continue to function in these animals, but that their activity is no longer integrated into a single circadian framework. The available evidence indicates that the mammalian pacemaking system comprises a set of independent oscillators normally regulated by the SCN and by light information that is transmitted via several retinofugal pathways.  相似文献   

2.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

3.
Abstract

Inbred mouse strains differ in the expression of free‐running circadian activity rhythms. Although previous studies have suggested that BALB/c mice fail to display coherent rhythmicity under constant light, these studies presented only averaged data, and not individual animals’ activity patterns. In the present study, wheel‐running activity rhythms were monitored from individual BALB/c mice during long‐term exposure to constant red light All mice displayed dramatic lability of circadian activity rhythms, characterized by spontaneous alterations in both free‐running period and rhythm coherence. These results suggest that the circadian system in this strain is composed of a population of weakly‐coupled circadian oscillators.  相似文献   

4.
Clock mechanisms in zebrafish   总被引:1,自引:0,他引:1  
  相似文献   

5.
《Chronobiology international》2013,30(5-6):383-391
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

6.
Even though peripheral circadian oscillators in the cardiovascular system are known to exist, the daily rhythms of the cardiovascular system are mainly attributed to autonomic or hormonal inputs under the control of the central oscillator, the suprachiasmatic nucleus (SCN). In order to examine the role of peripheral oscillators in the cardiovascular system, we used a transgenic mouse where the Clock gene is specifically disrupted in cardiomyocytes. In this cardiomyocyte-specific CLOCK mutant (CCM) mouse model, the circadian input from the SCN remains intact. Both CCM and wild-type (WT) littermates displayed circadian rhythms in wheel-running behavior. However, the overall wheel-running activities were significantly lower in CCM mice compared to WT over the course of 5 weeks, indicating that CCM mice either have lower baseline physical activities or they have lower physical adaptation abilities because daily wheel running, like routine exercise, induces physical adaptation over a period of time. Upon further biochemical analysis, it was revealed that the diurnal oscillations of phosphorylation states of several kinases and protein expression of the L-type voltage-gated calcium channel (L-VGCC) α1D subunit found in WT hearts were abolished in CCM hearts, indicating that in mammalian hearts, the daily oscillations of the activities of these kinases and L-VGCCs were downstream elements of the cardiac core oscillators. However, the phosphorylation of p38 MAPK exhibited robust diurnal rhythms in both WT and CCM hearts, indicating that cardiac p38 could be under the influence of the central clock through neurohormonal signals or be part of the circadian input pathway in cardiomyocytes. Taken together, these results indicate that the cardiac core oscillators have an impact in regulating circadian rhythmicities and cardiac function.  相似文献   

7.
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

8.
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

9.
The mammalian suprachiasmatic nuclei (SCN) contain thousands of neurons capable of generating near 24-h rhythms. When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations, or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves, independent of their intrinsic circadian period We therefore hypothesized that a cell''s location within the network may also critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their number and placement within the network. We found that the population synchronized to a higher degree when weak oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization for the population.  相似文献   

10.
Biological rhythms such as circadian rhythms, biochemical rhythms and neural oscillators are based on the mathematical model of the theory of harmonic oscillators. These are solutions of certain second-order differential equations. They can also be viewed as spherical harmonics on the circle in the two-dimensional Euclidean space. The spherical harmonics on (n-1)-spheres and, more generally, the Stiefel harmonics can represent oscillatory phenomena, and we expect that they can serve as models for more complex biological rhythms.  相似文献   

11.
The neurobiological substratum of circadian rhythmicity encompasses three levels of integration: firstly, generation of time signals by circadian pacemakers; secondly, entrainment of pacemakers by environmental influences; thirdly, coupling of circadian pacemakers among themselves and with target systems responsible for the expression of overt rhythms. From recent contributions, the notion that circadian organization results from the interaction of independent oscillators and pathways has been strengthened. In addition, recent evidence supports the existence of circadian rhythmicity in single isolated neurons. New information was produced on the gene control of circadian rhythm generation in Drosophila, as well as interesting advances in the understanding of neuronal mechanisms involved in the generation, entrainment and coupling of circadian rhythms in various species.  相似文献   

12.
Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.  相似文献   

13.
The mammalian circadian system consists of multiple oscillators with basically hierarchical relationship, in which the hypothalamic suprachiasmatic nucleus (SCN) is the master pacemaker and the other oscillators in the periphery are subordinate. Although peripheral oscillators have been preceded by the SCN in circadian studies, accumulating data have revealed the importance and characteristics of peripheral oscillators. Cultured cell lines have also provided valuable information about intracellular mechanisms of circadian rhythms. This review outlines the properties of peripheral clocks in several perspectives such as the mechanisms of autonomous oscillations, the clock resetting, and the clock outputs, and describes the usefulness of immortalized cultured cells as a model system of mammalian circadian clocks by introducing some fruits of related works.  相似文献   

14.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

15.
The circadian clock in the suprachiasmatic nucleus (SCN) maintains phase synchrony among circadian oscillators throughout the organism. Environmental light signals entrain the SCN, but timed, limited meal access acts as an overriding time cue for several peripheral tissues. We present data from a peripheral oscillator, the submaxillary salivary gland, in which temporal restriction of meals fails to entrain gene expression. In day-fed rats, submaxillary gland rhythms in expression of the clock gene Period1 (Per1) stay entrained to the light cycle (peaking at night) or become arrhythmic. This result suggests that feeding cues compete weakly with light cycle cues to set the phase of clock genes in this tissue. Since the submaxillary glands receive sympathetic innervation originating in the SCN, which relays light cycle cues to other oscillators, we attempted to assess the role of this neural input in phase control of submaxillary Per1 expression. We sympathetically denervated the submaxillary glands before subjecting rats to daytime-restricted feeding. After denervation, Per1 rhythms in all submaxillary glands shifted phase 180 degrees and entrained to daytime feeding. These results support the hypothesis that peripheral oscillators may receive multiple signals contributing to their phase of entrainment. Sympathetic efferents from the SCN can relay light cycle information, while other external cues may reach tissues through other efferents or nonneural pathways. In an abnormal, disruptive regimen such as daytime-restricted feeding, these different signals compete. Arrhythmicity may result if one signal is not clearly dominant. Elimination of the dominant signal (e.g., surgical sympathectomy) may allow a secondary signal to control phase.  相似文献   

16.
Because of the long term persistence of free-running circadian rhythms in populations of unicells, several investigators have considered, but not demonstrated, a possible role for intercellular interaction in maintaining synchrony between individual cells. The experiments described here were designed to test more critically the possibility that there is interaction between cells, including those possessing only small phase differences. None was detected; the bioluminescent glow of the mixed cultures matched the algebraic sum of the independent control cultures.  相似文献   

17.
Maternal feeding controls fetal biological clock   总被引:1,自引:0,他引:1  

Background

It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD) cycle.

Methodology/Principal Findings

To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN) and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy.

Conclusions/Significance

Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.  相似文献   

18.
The circadian system in mammals is a hierarchy of oscillators throughout the organism that are coordinated by the circadian clock in the hypothalamic suprachiasmatic nucleus. Peripheral clocks act to integrate time-of-day information from neural or hormonal signals, regulating gene expression, and, subsequently, organ physiology. However, the mechanisms by which the central clock communicates with peripheral oscillators are not understood and are likely tissue specific. In this study, we establish a mouse vascular cell model suitable for investigations of these mechanisms at a molecular level. Using the immortalized vascular smooth muscle cell line Movas-1, we determined that these cells express the circadian clock machinery with robust rhythms in mRNA expression over a 36-h period after serum shock synchronization. Furthermore, norepinephrine and forskolin were able to synchronize circadian rhythms in bmal1. With synchronization, we observed cycling of specific genes, including the tissue inhibitor of metalloproteinase 1 and 3 (timp1, timp3), collagen 3a1 (col3a1), transgelin 1 (sm22alpha), and calponin 1 (cnn1). Diurnal expression of these genes was also found in vivo in mouse aortic tissue, using microarray and real-time RT-PCR analysis. Both of these revealed ultradian rhythms in genes similar to the cycling observed in Movas-1 in vitro. These findings highlight the cyclical nature of structurally important genes in the vasculature that is similar both in vivo and in vitro. This study establishes the Movas-1 cells as a novel cell model from which to further investigate the molecular mechanisms of clock regulation in the vasculature.  相似文献   

19.
Even during “free-running” experiments, in which subjects lived in caves or cellars without any time cues, various circadian rhythms such as core body temperature and the sleep-wake cycle remained for a long time mutually synchronized in one group of subjects. In another group of subjects, or later in the same subjects, a number of unusually long sleep-wake cycles occurred while body temperature persisted in a near-24 hr rhythm. This has been termed “internal desynchronization” by Aschoff & Wever (1962) to emphasize the uncoupling of rhythms. Zulley (1980) and Czeisler et al. (1980) found that the duration of sleep depends regularly on the phase of the sleep onset in the body temperature rhythm, even in the apparently “random and irregular” sleep-wake pattern. The graph which plots, the sleep duration against the sleep onset phase is called sleep duration in this paper. We develop a quantitative, multi-oscillator model of human circadian system following Wever (1979) and Kronauer et al. (1982). Because the simplest model, which describes the state of each component oscillator by only one variable (ptlase) was adopted for each component oscillator, we can determine the intFraction between oscillators using sleep duration. It is found that a three-oscillator model can simulate several qualitative features of human circadian rhythms, such as an irregular free-running pattern and sleep duration. Moreover we find that the model reproduces the mysterious phenomenon of “forbidden wake up”, although we do not incorporate a priori any mechanism to explain it.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号