首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effectors of the innate immune system, the anti-bacterial peptides, have pivotal roles in preventing infection at epithelial surfaces. Here we show that proteinases of the significant human pathogens Pseudomonas aeruginosa, Enterococcus faecalis, Proteus mirabilis and Streptococcus pyogenes, degrade the antibacterial peptide LL-37. Analysis by mass spectrometry of fragments generated by P. aeruginosa elastase in vitro revealed that the initial cleavages occurred at Asn-Leu and Asp-Phe, followed by two breaks at Arg-Ile, thus inactivating the peptide. Proteinases of the other pathogens also degraded LL-37 as determined by SDS-PAGE. Ex vivo, P. aeruginosa elastase induced LL-37 degradation in human wound fluid, leading to enhanced bacterial survival. The degradation was blocked by the metalloproteinase inhibitors GM6001 and 1, 10-phenantroline (both of which inhibited P. aeruginosa elastase, P. mirabilis proteinase, and E. faecalis gelatinase), or the inhibitor E64 (which inhibited S. pyogenes cysteine proteinase). Additional experiments demonstrated that dermatan sulphate and disaccharides of the structure [DeltaUA(2S)-GalNAc(4,6S)], or sucroseoctasulphate, inhibited the degradation of LL-37. The results indicate that proteolytic degradation of LL-37 is a common virulence mechanism and that molecules which block this degradation could have therapeutic potential.  相似文献   

2.
Infected wounds cause delay in wound closure and impose significantly negative effects on patient care and recovery. Antimicrobial peptides (AMPs) with antimicrobial and wound closure activities, along with little opportunity for the development of resistance, represent one of the promising agents for new therapeutic approaches in the infected wound treatment. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 19-amino-acid designer peptide SHAP1 possessed salt-resistant antimicrobial activities. Here, we analyzed the wound closure activities of SHAP1 both in vitro and in vivo. SHAP1 did not affect the viability of human erythrocytes and keratinocytes up to 200 μM, and was not digested by exposure to proteases in the wound fluid, such as human neutrophil elastase and Staphylococcus aureus V8 proteinase for up to 12 h. SHAP1 elicited stronger wound closure activity than human cathelicidin AMP LL-37 in vitro by inducing HaCaT cell migration, which was shown to progress via transactivation of the epidermal growth factor receptor. In vivo analysis revealed that SHAP1 treatment accelerated closure and healing of full-thickness excisional wounds in mice. Moreover, SHAP1 effectively countered S. aureus infection and enhanced wound healing in S. aureus-infected murine wounds. Overall, these results suggest that SHAP1 might be developed as a novel topical agent for the infected wound treatment.  相似文献   

3.
Innate defense regulators (IDRs) are synthetic immunomodulatory versions of natural host defense peptides (HDP). IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.  相似文献   

4.
Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung’s host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (μM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50 = 50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.  相似文献   

5.
Antimicrobial peptides are essential components of innate immune systems that protect hosts from infection. They are also useful candidates for developing a new generation of antibiotics to fight antibiotic-resistant pathogens. Human innate immune peptide LL-37 can inhibit biofilm formation, but suffers from high cost due to a long peptide length and rapid protease degradation. To improve the peptide, we previously identified the major active region and changed the peptide backbone structure. This study designed two families of new peptides by altering peptide side chains. Interestingly, these peptides displayed differential potency against various ESKAPE pathogens in vitro and substantially reduced hemolysis. Further potency test in vivo revealed that 17tF-W eliminated the burden of methicillin-resistant Staphylococcus aureus (MRSA) USA300 in both mouse-embedded catheters and their surrounding tissues. In addition, peptide treatment suppressed the level of chemokine TNFα, and boosted the levels of chemokines MCP-1, IL-17A and IL-10 in the surrounding tissues of the infected catheter embedded in mice. In conclusion, we have designed a set of new LL-37 peptides with varying antimicrobial activities, opening the door to potential topical treatment of infections involving different drug-resistant pathogens.  相似文献   

6.
Antimicrobial peptides are endogenous antibiotics that directly inactivate microorganisms and in addition have a variety of receptor-mediated functions. LL-37/hCAP-18 is the only cathelicidin found in humans and is involved in angiogenesis and regulation of the innate immune system. The aim of the present study was to characterize the role of the peptide LL-37 in the regulation of wound closure of the airway epithelium in the cell line NCI-H292 and primary airway epithelial cells. LL-37 stimulated healing of mechanically induced wounds in monolayers of the cell line and in differentiated primary airway epithelium. This effect was detectable at concentrations of 5 mug/ml in NCI-H292 and 1 mug/ml in primary cells. The effect of LL-37 on wound healing was dependent on the presence of serum. LL-37 induced cell proliferation and migration of NCI-H292 cells. Inhibitor studies in the wound closure and proliferation assays indicated that the effects caused by LL-37 are mediated through epidermal growth factor receptor, a G protein-coupled receptor, and MAP/extracellular regulated kinase. In conclusion, LL-37 induces wound healing, proliferation, and migration of airway epithelial cells. The peptide is likely involved in the regulation of tissue homeostasis in the airways.  相似文献   

7.
Antimicrobial peptides produced by epithelial cells and neutrophils represent essential elements of innate immunity, and include the defensin and cathelicidin family of antimicrobial polypeptides. The human cathelicidin cationic antimicrobial protein-18 is an antimicrobial peptide precursor predominantly expressed in neutrophils, and its active peptide LL-37 is released from the precursor through the action of neutrophil serine proteinases. LL-37 has been shown to display antimicrobial activity against a broad spectrum of microorganisms, to neutralize LPS bioactivity, and to chemoattract neutrophils, monocytes, mast cells, and T cells. In this study we show that LL-37 activates airway epithelial cells as demonstrated by activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and increased release of IL-8. Epithelial cell activation was inhibited by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, by blocking anti-EGFR and anti-EGFR-ligand Abs, and by the metalloproteinase inhibitor GM6001. These data suggest that LL-37 transactivates the EGFR via metalloproteinase-mediated cleavage of membrane-anchored EGFR-ligands. LL-37 may thus constitute one of the mediators by which neutrophils regulate epithelial cell activity in the lung.  相似文献   

8.
Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X = 0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.  相似文献   

9.
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly α-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.  相似文献   

10.
The closure of skin wounds is essential for resistance against microbial pathogens, and keratinocyte migration is an important step in skin wound healing. Cathelicidin hCAP18/LL-37 is an innate antimicrobial peptide that is expressed in the skin and acts to eliminate microbial pathogens. Because hCAP18/LL-37 is up-regulated at skin wound sites, we hypothesized that LL-37 induces keratinocyte migration. In this study, we found that 1 microg/ml LL-37 induced the maximum level of keratinocyte migration in the Boyden chamber assay. In addition, LL-37 phosphorylated the epidermal growth factor receptor (EGFR) after 10 min, which suggests that LL-37-induced keratinocyte migration occurs via EGFR transactivation. To test this assumption, we used inhibitors that block the sequential steps of EGFR transactivation, such as OSU8-1, CRM197, anti-EGFR no. 225 Ab, and AG1478. All of these inhibitors completely blocked LL-37-induced keratinocyte migration, which indicates that migration occurs via HB-EGF-mediated EGFR transactivation. Furthermore, CRM197, anti-EGFR no. 225, and AG1478 blocked the LL-37-induced phosphorylation of STAT3, and transfection with a dominant-negative mutant of STAT3 abolished LL-37-induced keratinocyte migration, indicating the involvement of the STAT3 pathway downstream of EGFR transactivation. Finally, we tested whether the suppressor of cytokine signaling (SOCS)/cytokine-inducible Src homology 2-containing protein (CIS) family of negative regulators of STAT3 regulates LL-37-induced keratinocyte migration. Transfection with SOCS1/Jak2 binding protein or SOCS3/CIS3 almost completely abolished LL-37-induced keratinocyte migration. In conclusion, LL-37 induces keratinocyte migration via heparin-binding-EGF-mediated transactivation of EGFR, and SOCS1/Jak 2 binding and SOCS3/CIS3 negatively regulate this migration. The results of this study suggest that LL-37 closes skin wounds by the induction of keratinocyte migration.  相似文献   

11.
Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding.  相似文献   

12.
Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis.  相似文献   

13.
Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.  相似文献   

14.
Candida albicans is amajor fungal pathogen in humans. Antimicrobial peptides (AMPs) are critical components of the innate immune response in vertebrates and represent the first line of defense against microbial infection. LL-37 is the only member of the human family of cathelicidin AMPs and is commonly expressed by various tissues and cells, including surfaces of epithelia. The candidacidal effects of LL-37 have been well documented, but the mechanisms by which LL-37 kills C. albicans are not completely understood. In this study, we examined the effects of LL-37 on cell wall and cellular responses in C. albicans. Using transmission electron microscopy, carbohydrate analyses, and staining for β-1,3-glucan, changing of C. albicans cell wall integrity was detected upon LL-37 treatment. In addition, LL-37 also affected cell wall architecture of the pathogen. Finally, DNA microarray analysis and quantitative PCR demonstrated that sub-lethal concentrations of LL-37 modulated the expression of genes with a variety of functions, including transporters, regulators for biological processes, response to stress or chemical stimulus, and pathogenesis. Together, LL-37 induces complex responses in C. albicans, making LL-37 a promising candidate for use as a therapeutic agent against fungal infections.  相似文献   

15.
Acinetobacter baumannii infections are difficult to treat due to multidrug resistance. Biofilm formation by A. baumannii is an additional factor in its ability to resist antimicrobial therapy. The antibacterial and antibiofilm activities of the human antimicrobial peptide LL-37 and its fragments KS-30, KR-20 and KR-12 against clinical isolates of multidrug-resistant (MDR) A. baumannii were evaluated. The minimal inhibitory concentration (MIC) of LL-37 against MDR A. baumannii isolates ranged from 16 to 32 μg/mL. The MIC of KS-30 fragment varied from 8.0 to16 μg/mL and the KR-20 fragment MIC ranged from 16 to 64 μg/mL. LL-37 and KS-30 fragment exhibited 100% bactericidal activity against five A. baumannii strains, including four MDR clinical isolates, within 30 min at concentrations of 0.25–1 μg/mL. By 0.5 h, the fragments KR-20 and KR-12 eliminated all tested strains at 8 and 64 μg/mL respectively. LL-37 and its fragments displayed anti-adherence activities between 32-128 μg/mL. A minimum biofilm eradication concentration (MBEC) biofilm assay demonstrated that LL-37 inhibited and dispersed A. baumannii biofilms at 32 μg/mL respectively. Truncated fragments of LL-37 inhibited biofilms at concentrations of 64–128 μg/mL. KS-30, the truncated variant of LL-37, effectively dispersed biofilms at 64 μg/mL. At 24 h, no detectable toxicity was observed at the efficacious doses when cytotoxicity assays were performed. Thus, LL-37, KS-30 and KR-20 exhibit significant antimicrobial activity against MDR A. baumannii. The prevention of biofilm formation in vitro by LL-37, KS-30 and KR-20 adds significance to their efficacy. These peptides can be potential therapeutics against MDR A. baumannii infections.  相似文献   

16.
Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the “classic” human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.  相似文献   

17.
Host defense peptides play an important host-protective role by their microcidal action, immunomodulatory functions, and tissue repair activities. Proteolysis is a common strategy of pathogens used to neutralize host defense peptides. Here, we show that actin, the most abundant structural protein in eukaryotes, binds the LL-37 host defense peptide, protects it from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis, and enables its antimicrobial activity despite the presence of the proteases. Co-localization of LL-37 with extracellular actin was observed in necrotized regions of samples from oral lesions. Competition assays, cross-linking experiments, limited proteolysis, and mass spectrometry revealed that LL-37 binds by specific hydrophobic interactions to the His-40–Lys-50 segment of actin, located in the DNase I binding loop. The integrity of the binding site of both LL-37 and actin is a prerequisite to the binding. Our results demonstrate that actin, presumably released by dead cells and abundant in infected sites, might be utilized by the immune system to enhance spatio-temporal immunity in an attempt to arrest infection and control inflammation.  相似文献   

18.
Cox DL  Sun Y  Liu H  Lehrer RI  Shafer WM 《Peptides》2003,24(11):1741-1746
LL-37 displays potent broad-spectrum activity against a number of pathogenic bacteria and is the only cathelicidin thus far identified in humans. In this study, we examined the capacity of human LL-37 and the similar CAP-18-derived peptide from rabbits to exert antimicrobial activity against the causative agent of syphilis, Treponema pallidum. We found that both peptides, as well as a truncated version of human LL-37 that contains its bactericidal domain, could exert rapid, but salt-sensitive antimicrobial activity against T. pallidum. Infectivity of T. pallidum in a rabbit model could effectively be blocked with the synthetic truncated LL-37-derived peptide WS22-N-amide.  相似文献   

19.
Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU.  相似文献   

20.
Cathelicidins such as the human 37-amino acid peptide (LL-37) are peptides that not only potently kill microbes but also trigger inflammation by enabling immune recognition of endogenous nucleic acids. Here, a detailed structure–function analysis of LL-37 was performed to understand the details of this process. Alanine scanning of 34-amino acid peptide (LL-34) showed that some variants displayed increased antimicrobial activity against Staphylococcus aureus and group A Streptococcus. In contrast, different substitutions clustered on the hydrophobic face of the LL-34 alpha helix inhibited the ability of those variants to promote type 1 interferon expression in response to U1 RNA or to present U1 to the scavenger receptor (SR) B1 on the keratinocyte cell surface. Small-angle X-ray scattering experiments of the LL-34 variants LL-34, F5A, I24A, and L31A demonstrated that these peptides form cognate supramolecular structures with U1 characterized by inter-dsRNA spacings of approximately 3.5 nm, a range that has been previously shown to activate toll-like receptor 3 by the parent peptide LL-37. Therefore, while alanine substitutions on the hydrophobic face of LL-34 led to loss of binding to SRs and the complete loss of autoinflammatory responses in epithelial and endothelial cells, they did not inhibit the ability to organize with U1 RNA in solution to associate with toll-like receptor 3. These observations advance our understanding of how cathelicidin mediates the process of innate immune self-recognition to enable inert nucleic acids to trigger inflammation. We introduce the term “innate immune vetting” to describe the capacity of peptides such as LL-37 to enable certain nucleic acids to become an inflammatory stimulus through SR binding prior to cell internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号