首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tachyplesin I is a cyclic beta-sheet antimicrobial peptide isolated from the hemocytes of Tachypleus tridentatus. The four cysteine residues in tachyplesin I play a structural role in imparting amphipathicity to the peptide which has been shown to be essential for its activity. We investigated the role of amphipathicity using an analogue of tachyplesin I (TP-I), CDT (KWFRVYRGIYRRR-NH(2)), in which all four cysteines were deleted. Like TP-I, CDT shows antimicrobial activity and disrupts Escherichia coli outer membrane and model membranes mimicking bacterial inner membranes at micromolar concentrations. The CDT peptide does not cause hemolysis up to 200 microg/mL while TP-I showed about 10% hemolysis at 100 microg/mL and about 25% hemolysis at 150 microg/mL. Peptide-into-lipid titrations under isothermal conditions reveal that the interaction of CDT with lipid membranes is an enthalpy-driven process. Binding assays performed using fluorometry demonstrate that the peptide CDT binds and inserts into only negatively charged membranes. The peptide-induced thermotropic phase transition of MLVs formed of DMPC and the DMPC/DMPG (7:3) mixture suggests specific lipid-peptide interactions. The circular dichroism study shows that the peptide exists as an unordered structure in an aqueous buffer and adopts a more ordered beta-structure upon binding to negatively charged membrane. The NMR data suggest that CDT binding to negatively charged bilayers induces a change in the lipid headgroup conformation with the lipid headgroup moving out of the bilayer surface toward the water phase, and therefore, a barrel stave mechanism of membrane disruption is unlikely as the peptide is located near the headgroup region of lipids. The lamellar phase (31)P chemical shift spectra observed at various concentrations of the peptide in bilayers suggest that the peptide may function neither via fragmentation of bilayers nor by promoting nonlamellar structures. NMR and fluorescence data suggest that the presence of cholesterol inhibits the peptide binding to the bilayers. These properties help to explain that cysteine residues may not contribute to antimicrobial activity and that the loss of hemolytic activity is due to lack of hydrophobicity and amphipathicity.  相似文献   

2.
CL(14-25), a dodecapeptide, that is a partial region near N-terminus of cyanate lyase (CL, EC 4.3.99.1) from rice (Oryza sativa L. japonica), contains three arginine and two lysine residues. It was a novel cationic α-helical antimicrobial peptide. The antimicrobial activity of CL(14-25) against Porphyromonas gingivalis, a periodontal pathogen, was quantitatively evaluated by a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentration of CL(14-25) against P. gingivalis cells was 145 μM. CL(14-25), even at a concentration of 800 μM, had no hemolytic activity. When giant unilamellar vesicles (GUVs) that mimic the membrane composition of Gram-negative bacteria were used, microscopy image analysis suggested that CL(14-25) disrupted GUVs in a detergent-like manner. Therefore, CL(14-25) appears to exhibit antimicrobial activity through membrane disruption. To investigate the contribution of cationic amino acid residues in CL(14-25) to its antimicrobial activity, we synthesized four truncated CL analogs, in which one or two cationic amino acid residues were deleted from the N- and C- termini of CL(14-25). The degrees of calcein leakage from large unilamellar vesicles (LUVs) and 3,3′-dipropylthiadicarbocyanine iodide (diSC3-5) release from P. gingivalis cells induced by truncated CL analogs were closely related to their antimicrobial activities. CL analogs, which were truncated by removing an arginine residue from the N-terminus and a lysine residue from the C-terminus maintained their antimicrobial activity. However, CL analogs, which were further truncated by removing two arginine residues from the N-terminus, and an arginine and a lysine residue from the C-terminus, rarely exhibited antimicrobial activity.  相似文献   

3.
Tachyplesins and their analogs are antimicrobial peptides composed of 17 or 18 amino acid residues present abundantly in acid extracts of hemocyte debris of horseshoe crabs. We purified here tachyplesin isopeptides from hemocytes of two species of Southeast Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus gigas, and determined their amino acid sequences. The major tachyplesin isolated from both species was identified, respectively, as tachyplesin I, which had previously been found in hemocytes of the Japanese horseshoe crab (Tachypleus tridentatus). The yield from both species was very high (more than 70 mg per 100 g wet weight of hemocytes), i.e., comparable with that from T. tridentatus. In addition to tachyplesin I, a new tachyplesin isopeptide, named tachyplesin III, was also isolated from T. gigas hemocytes, in which an arginine replaced the 15th lysine of tachyplesin I. The carboxyl-terminal residue of the isolated tachyplesins I and III was confirmed, respectively, to be an arginine alpha-amide by chemical analysis. Furthermore, a tachyplesin peptide derivative with a carboxyl-terminal extension of glycine-lysine was newly found in the hemocytes of C. rotundicauda. It appeared to be an intermediate derived from a tachyplesin precursor during processing to the mature form.  相似文献   

4.
Koo YS  Kim JM  Park IY  Yu BJ  Jang SA  Kim KS  Park CB  Cho JH  Kim SC 《Peptides》2008,29(7):1102-1108
The structure-activity relations and mechanism of action of parasin I, a 19-amino acid histone H2A-derived antimicrobial peptide, were investigated. Parasin I formed an amphipathic alpha-helical structure (residues 9-17) flanked by two random coil regions (residues 1-8 and 18-19) in helix-promoting environments. Deletion of the lysine residue at the N-terminal [Pa(2-19)] resulted in loss of antimicrobial activity, but did not affect the alpha-helical content of the peptide. The antimicrobial activity was recovered when the lysine residue was substituted with another basic residue, arginine ([R(1)]Pa), but not with polar, neutral, or acidic residues. Progressive deletions from the C-terminal [Pa(1-17), Pa(1-15)] slightly increased the antimicrobial activity (1-4 microg/ml) without affecting the alpha-helical content of the peptide. However, further deletion [Pa(1-14)] resulted in nearly complete loss of antimicrobial activity and alpha-helical structure. Confocal microscopic analysis and membrane permeabilization assays showed that parasin I and its analogs with comparable antimicrobial activities localized to the cell membrane and subsequently permeabilized the outer and cytoplasmic membranes. Pa(1-14) also localized to the cell membrane, but lost membrane-permeabilizing activity, whereas Pa(2-19) showed poor membrane-binding and -permeabilizing activities. The results indicate that the basic residue at the N-terminal is essential for the membrane-binding activity of parasin I, and among the membrane-binding parasin I analogs, the alpha-helical structure is necessary for the membrane-permeabilizing activity.  相似文献   

5.
Tachyplesin is an antimicrobial peptide recently found in the acid extract of hemocytes from the Japanese horseshoe crab (Tachypleus tridentatus) [Nakamura, T. et al. (1988) J. Biol. Chem. 263, 16709-16713]. In our continuing studies on the peptide, we have found an isopeptide, tachyplesin II, and also polyphemusins I and II in hemocytes of the American horseshoe crab (Limulus polyphemus). The complete primary structures of these peptides, which are very similar to that of the previously isolated peptide, now named tachyplesin I, were determined to be as follows: (Table: see text). The isopeptide, tachyplesin II, consists of 17 residues with a COOH-terminal arginine alpha-amide. On the other hand, both polyphemusins I and II were found to contain 18 residues due to an additional Arg residue at the NH2-terminal end as well as a COOH-terminal arginine alpha-amide. The disulfide linkages for polyphemusin I consisted of two bridges between Cys-4 and Cys-17 and between Cys-8 and Cys-13, which was identical to in the case of tachyplesin I. Moreover, all of these peptides inhibited the growth of not only Gram-negative and -positive bacteria but also fungi, such as Candida albicans M9. Furthermore, complex formation between these peptides and bacterial lipopolysaccharides was also observed in a double diffusion test. These results suggest that tachyplesins and polyphemusins are probably located in the hemocyte membrane, where they act on antimicrobial peptides as a self-defense mechanism in the horseshoe crab against invading microorganisms.  相似文献   

6.
Liu Y  Jin L  Hou JB  Xu PX  Zhao YF 《Amino acids》2007,33(1):145-150
Summary. In this paper, the analog of arginine residues in peptides was synthesized and characterized by ESI-MS/MS (electrospray ionization with tandem mass spectrometry), 31P NMR, 1H NMR, IR and high-resolution mass spectrometry. When the Todd reaction activity of the guanidino group in free arginine and the arginine peptide analog were compared, it was found that the proton affinity of the guanidino group was decreased when both the N- and the C-terminal were blocked. As a result, the guanidino group of arginine residues in peptides could be phosphorylated under the Todd reaction condition, but not the free arginine. This result was further proved by the theoretical calculation of their proton affinity.  相似文献   

7.
The predicted conformation of ranatuerin-1 (SMLSVLKNLG(10)KVGLGFVACK(20)INK QC), an antimicrobial peptide first isolated from the skin of the bullfrog Rana catesbeiana, comprises three structural domains: alpha-helix (residues 1-8), beta-sheet (residues 11-16) and beta-turn (residues 20-25). Circular dichroism studies confirm significant alpha-helical character in 50% trifluoroethanol. Replacement of Cys-19 and Cys-25 by serine resulted only in decreased antimicrobial potency but deletion of either the cyclic heptapeptide region [residues (19-25)] or the N-terminal domain [residues (1-8)] produced inactive analogs. Substitution of the glycine residues in the central domain of the [Ser-19, Ser-25] analog by lysine produced inactive peptides despite increased alpha-helical content and cationicity. The substitution Asn-8-->Lys gave a ranatuerin-1 analog with increased alpha-helicity and cationicity and increased potency against a range of Gram-positive and Gram-negative bacteria and against C. albicans but only a small increase (21%) in hemolytic activity. In contrast, increasing alpha-helicity and hydrophobicity by the substitution Asn-22-->Ala resulted in a 3.5-fold increase in hemolytic activity. Effects on antimicrobial potencies of substitutions of neutral amino acids at positions 4, 18, 22, and 24 by lysine were less marked. Strains of pathogenic E. coli from different groups showed varying degrees of sensitivity to ranatuerin-1 (MIC between 5 and 40 microM) but [Lys-8] ranatuerin-1 showed increased potency (between 2- and 8-fold; P < 0.01) against all strains. The data demonstrate that [Lys-8] ranatuerin-1 shows potential as a candidate for drug development.  相似文献   

8.
Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using “click chemistry” and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17–25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by “click chemistry” and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.  相似文献   

9.
We have purified a small size antimicrobial peptide, named gomesin, from the hemocytes of the unchallenged tarantula spider Acanthoscurria gomesiana. Gomesin has a molecular mass of 2270.4 Da, with 18 amino acids, including a pyroglutamic acid as the N terminus, a C-terminal arginine alpha-amide, and four cysteine residues forming two disulfide bridges. This peptide shows marked sequence similarities to antimicrobial peptides from other arthropods such as tachyplesin and polyphemusin from horseshoe crabs and androctonin from scorpions. Interestingly, it also shows sequence similarities to protegrins, antimicrobial peptides from porcine leukocytes. Gomesin strongly affects bacterial growth, as well as the development of filamentous fungi and yeast. In addition, we showed that gomesin affects the viability of the parasite Leishmania amazonensis.  相似文献   

10.
Human α‐defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α‐defensins in the crystalline state. However, the physico‐chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α‐defensins, shows broad‐spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N‐terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N‐terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full‐length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Porcine β defensin 2 (pBD2) is a small, cationic and amphiphilic antimicrobial peptide. It has broad antimicrobial activities against bacteria and plays an important role in host defense. In order to enhance its antimicrobial activity and better understand the effect of positively charged residues on its activity, we substituted eight amino acid residues with arginine or lysine respectively. All mutants were cloned and expressed in BL21 (DE3) plysS and the mutant proteins were then purified. These mutant versions had higher positive charges but similar structural configurations compared to the wild-type pBD2. Moreover, these mutant proteins showed different antimicrobial activities against E. coli and S. aureus. The mutant I4R of pBD2 had the highest antimicrobial activity. In addition, all the mutants showed low hemolytic activities. Our results indicated that the positively charged residues were not the only factor that influenced antimicrobial activity, but other factors such as distribution of these residues on the surface of defensins might also contribute to their antimicrobial potency.  相似文献   

12.
Melittin (MLT) is a lytic peptide with a broad spectrum of activity against both eukaryotic and prokaryotic cells. To understand the role of proline and the thiol group of cysteine in the cytolytic activity of MLT, native MLT and cysteine-containing analogs were prepared using solid phase peptide synthesis. The antimicrobial and cytolytic activities of the monomeric and dimeric MLT peptides against different cells and model membranes were investigated. The results indicated that the proline residue was necessary for antimicrobial activity and cytotoxicity and its absence significantly reduced lysis of model membranes and hemolysis. Although lytic activity against model membranes decreased for the MLT dimer, hemolytic activity was increased. The native peptide and the MLT-P14C monomer were mainly unstructured in buffer while the dimer adopted a helical conformation. In the presence of neutral and negatively charged vesicles, the helical content of the three peptides was significantly increased. The lytic activity, therefore, is not correlated to the secondary structure of the peptides and, more particularly, on the propensity to adopt helical conformation.  相似文献   

13.
IsCT1‐NH2 is a cationic antimicrobial peptide isolated from the venom of the scorpion Opisthacanthus madagascariensis that has a tendency to form an α‐helical structure and shows potent antimicrobial activity and also inopportunely shows hemolytic effects. In this study, five IsCT1 (ILGKIWEGIKSLF)‐based analogs with amino acid modifications at positions 1, 3, 5, or 8 and one analog with three simultaneous substitutions at the 1, 5, and 8 positions were designed. The net charge of each analog was between +2 and +3. The peptides obtained were characterized by mass spectrometry and analyzed by circular dichroism for their structure in different media. Studies of antimicrobial activity, hemolytic activity, and stability against proteases were also carried out. Peptides with a substitution at position 3 or 5 ([L]3‐IsCT1‐NH2, [K]3‐IsCT1‐NH2, or [F]5‐IsCT1‐NH2) showed no significant change in an activity relative to IsCT1‐NH2. The addition of a proline residue at position 8 ([P]8‐IsCT1‐NH2) reduced the hemolytic activity as well as the antimicrobial activity (MIC ranging 3.13‐50 μmol L?1), and the addition of a tryptophan residue at position 1 ([W]1‐IsCT1‐NH2) increased the hemolytic activity (MHC = 1.56 μmol L?1) without an improvement in antimicrobial activity. The analog [A]1[F]5[K]8‐IsCT1‐NH2, which carries three simultaneous modifications, presented increasing or equivalent values in antimicrobial activity (MIC approximately 0.38 and 12.5 μmol L?1) with a reduction in hemolytic activity. In addition, this analog presented the best resistance against proteases. This kind of strategy can find functional hotspots in peptide molecules in an attempt to generate novel potent peptide antibiotics.  相似文献   

14.
Tachyplesin I is a potent antimicrobial peptide with broad spectrum of antimicrobial activity. It has 2 disulfide bonds and can form 3 disulfide bond isomers. In this study, the structure and antimicrobial activity of 3 tachyplesin I isomers (tachyplesin I, 3C12C, 3C7C) were investigated using molecular dynamic simulations, circular dichroism structural study, as well as antimicrobial activity and hemolysis assay. Our results suggest that in comparison to the native peptide, the 2 isomers (3C12C, 3C7C) have substantial structural and activity variations. The native peptide is in the ribbon conformation, while 3C12C and 3C7C possess remarkably different secondary structures, which are referred as “globular” and “beads” isomers, respectively. The substantially decreased hemolysis effects for these 2 isomers is accompanied by significantly decreased anti‐gram‐positive bacterial activity.  相似文献   

15.
β‐Hairpin antimicrobial peptides are among the most potent peptide antibiotics of animal origin. Arenicins, isolated earlier from marine polychaeta lugworm Arenicola marina, belong to a family of β‐hairpin antimicrobial peptides and display a broad spectrum of biological activities. However, despite being potent antimicrobials, arenicins are partially unapplicable as therapeutics as a result of their relatively high cytotoxicity against mammalian cells. In this study, a template‐based approach was used to create therapeutically valuable analogs of arenicin‐1 and identify amino acid residues important for antibacterial and cytotoxic activities of the peptide. The plasmids encoding recombinant analogs were constructed by mutagenesis technique based on inverse PCR amplification of the whole arenicin‐1 expression plasmid. The analogs were produced as a part of the fusion proteins in Escherichia coli. It was shown that an obvious reduction in hemolytic activity without lose of antimicrobial activity can be achieved by a single amino acid substitution in the non‐polar face of the molecule with hydrophilic residues such as serine and arginine. As the result, the selective analog with 50‐fold improved therapeutic index was developed. The circular dichroism spectra demonstrated that the secondary structure of the analog was similar to the natural arenicin‐1 in water solution and sodium dodecyl sulfate micelles but significantly differed in the presence of dodecylphosphocholine micelles mimicking mammalian membranes. Similarly to arenicin‐1, the designed analog killed bacteria via induction of the membrane damage, assessed using the fluorescent dye SYTOX Green uptake. Our results afford molecular insight into mechanism of antimicrobial action of the designed arenicin analogs and their possible clinical application. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
N G Park  S Lee  O Oishi  H Aoyagi  S Iwanaga  S Yamashita  M Ohno 《Biochemistry》1992,31(48):12241-12247
The mode of action of tachyplesin I, an antimicrobial cationic heptadecapeptide amide isolated from the hemocyte debris of a horseshoe crab, Tachypleus tridentatus, toward lipid matrices was studied with synthetic tachyplesin I, its analogs with Phe in place of Trp or Tyr, a linear analog with no disulfide bonds, and two linear short fragments. Circular dichroism spectra showed that tachyplesin I took an antiparallel beta-structure in buffer solution and a certain less ordered structure in acidic liposomes composed of egg phosphatidylcholine and egg phosphatidylglycerol (3:1). Spectrophotometric titration of the peptides with laurylphosphorylcholine revealed that both Trp and Tyr residues orient toward the inside of lipid matrices, suggesting that they are on the same side of the peptide backbone. The carboxyfluorescein leakage experiment and fluorescence data indicated that tachyplesin I interacted strongly with neutral and acidic lipid bilayers and an aromaticity-rich hydrophobic part of the peptide was embedded in lipid membranes. All the peptides except for the short fragments were almost equally active in lipopolysaccharide binding. The energy-transfer experiment showed that a conformational change occurred such that the Tyr and Trp residues are positioned more closely to each other in acidic liposomes than in buffer solution. The present study strongly suggested that amphipathic lipid bilayers induced a conformational change of tachyplesin I from an energetically stable beta-structure to a less ordered, probably more amphipathic structure.  相似文献   

17.
A novel antimicrobial peptide, designated macropin (MAC‐1) with sequence Gly‐Phe‐Gly‐Met‐Ala‐Leu‐Lys‐Leu‐Leu‐Lys‐Lys‐Val‐Leu‐NH2, was isolated from the venom of the solitary bee Macropis fulvipes. MAC‐1 exhibited antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l ‐ or d ‐lysine in selected positions. Furthermore, all‐d analog and analogs with d ‐amino acid residues introduced at the N‐terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α‐helical secondary structure in the presence of trifluoroethanol or membrane‐mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure–activity relationship for the effect of d ‐amino acid substitutions in MAC‐1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Jang SA  Kim H  Lee JY  Shin JR  Kim da J  Cho JH  Kim SC 《Peptides》2012,34(2):283-289
Buforin IIb-a synthetic analog of buforin II that contains a proline hinge between the two α-helices and a model α-helical sequence at the C-terminus (3× RLLR)-is a potent cell-penetrating antimicrobial peptide. To develop novel antimicrobial peptides with enhanced activities and specificity/therapeutic index, we designed several analogs (Buf III analogs) by substitutions of amino acids in the proline hinge region and two α-helices of buforin IIb, and examined their antimicrobial activity and mechanism of action. The substitution of hydrophobic residues ([F(6)] and [V(8)]) in the proline hinge region with other hydrophobic residues ([W(6)] and [I(8)]) did not affect antimicrobial activity, while the substitution of the first four amino acids RAGL with a model α-helical sequence increased the antimicrobial activity up to 2-fold. Like buforin IIb, Buf III analogs penetrated the bacterial cell membranes without significantly permeabilizing them and were accumulated inside Escherichia coli. Buf III analogs were shown to bind DNA in vitro and the DNA binding affinity of the peptides correlated linearly with their antimicrobial potency. Among the Buf III analogs, the therapeutic index of Buf IIIb and IIIc (RVVRQWPIG[RVVR](3) and KLLKQWPIG[KLLK](3), respectively) were improved 7-fold compared to that of buforin IIb. These results indicate that Buf III analogs appear to be promising candidates for future development as novel antimicrobial agents.  相似文献   

19.

Background

Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.

Methodology/Principal Findings

HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.

Conclusions/Significance

Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.  相似文献   

20.
Linear cationic α‐helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine‐substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic α‐helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10‐Dec‐NH2 analog showed similar activity against different microorganisms (c.a. 0.4–0.8 μmol L?1), helical structuration, and some hemolytic activity, [Leu]8‐Dec‐NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 μmol L?1). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号