首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

2.
Hydroxylamine oxidoreductase [EC 1.7.3.4] of Nitrosomonas europaea was purified to an electrophoretically homogeneous state and some of its properties were studied. The molecular weight of the enzyme as determined by gel filtration on Sephadex G150 and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is 175,000-180,000, while the minimum molecular weight per heme determined from the dry weight and heme content is 17,500. The enzyme is a C-type cytochrome; its reduced form shows absorption peaks at 418 (gamma peak), 521 (beta peak), 553 (alpha peak), and 460 nm (due to an unidentified chromophore). Although the alpha peak at 553 nm has a shoulder at 559 nm, the enzyme does not posses protoheme or a cytochrome b subunit. It seems likely that the enzyme molecule possess heme c molecules in different states. The enzyme reacts rapidly with various eukaryotic cytochromes c, but does not react with "bacterial-type" cytochromes c. Although the enzyme does not react with cytochrome c-552 (N. europaea), another C-type cytochrome of the organism, cytochrome c-554 (N. europaea) acts as an electron acceptor for the enzyme.  相似文献   

3.
7 alpha-Hydroxy-4-cholesten-3-one 12 alpha-monooxygenase was purified from liver microsomes of phenobarbital-treated rabbits. The purification was carried out by solubilization of microsomes by cholate, fractionation with polyethylene glycol, affinity chromatography on cholate-Sepharose 4B column, hydroxylapatite column chromatography, chromatography on DEAE-Sepharose CL-6B column, and a second hydroxylapatite column chromatography. The purified preparation gave a single major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contained 9.0 nmol of cytochrome P-450/mg of protein, which corresponded to 5.3-fold purification from microsomes on the basis of specific heme content. The specific activity of the enzyme expressed as enzyme activity per mg of enzyme protein was increased 315-fold from microsomes. The molecular weight of the enzyme was estimated to be 56,000 from calibrated polyacrylamide gel electrophoresis. The enzyme-pH curve gave a peak at pH 7.0. The Michaelis constant for 7 alpha-hydroxy-4-cholesten-3-one was 27 microM. Absorption spectra of the oxidized form of the enzyme showed a Soret band at 418 nm. 7 alpha-Hydroxy-4-cholesten-3-one 12 alpha-monooxygenase activity was reconstituted from the purified cytochrome P-450, NADPH-cytochrome P-450 reductase, dilauroylglyceryl-3-phosphorylcholine, and NADPH. The purified enzyme was free from steroid 25-hydroxylase activity and that of 26- or 27-hydroxylase but revealed some activity for benzphetamine N-demethylation. The enzyme activity was not inhibited by metapyrone, aminoglutethimide, and KCN, but was seriously inhibited by nonionic detergents such as Emulgen 913. The enzyme was labile under low buffer concentrations but was stabilized at least for 4 weeks under higher buffer concentration such as 300 mM phosphate buffer.  相似文献   

4.
Cytochrome c1 of photosynthetic bacterium R. sphaeroides R-26 has been purified from isolated cytochrome b-c1 complex to a single polypeptide, using a procedure involving Triton X-100 and urea solubilization, calcium phosphate column chromatography and ammonium sulfate fractionation. The purified protein contains 30 nmoles heme per mg protein and has an apparent molecular weight of 30,000, as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis. Bacterial cytochrome c1 is soluble in aqueous solution in the absence of detergent and has spectral characteristics similar to mammalian cytochrome c1. The amino acid compositions of these two proteins, however, are not comparable.  相似文献   

5.
Purification of Spinach Leaf ADPglucose Pyrophosphorylase   总被引:13,自引:11,他引:2       下载免费PDF全文
ADPglucose pyrophosphorylase from spinach leaves has been purified to homogeneity by hydrophobic chromatography carried out in 1 molar phosphate buffer. After polyacrylamide gel electrophoresis, the preparation showed only one protein staining band that coincided with a single activity stain. The enzyme appears to be composed of two subunits with molecular weights of 44,000 and 48,000, respectively, as determined by SDS polyacrylamide gel electrophoresis. Thus ADPglucose pyrophosphorylase of spinach appears to be comprised of subunits which are similar in size to the subunits of ADPglucose pyrophosphorylase isolated from bacterial sources. In contrast, a subunit molecular weight of 96,000 has been reported for the maize endosperm ADPglucose pyrophosphorylase (Fuchs RL and JO Smith 1979 Biochim Biophys Acta 556: 40-48). The purified enzyme retains similar allosteric and catalytic properties as reported previously and is more sensitive to phosphate inhibition under “dark”-simulated conditions than under “light”-simulated conditions.  相似文献   

6.
Monodehydroascorbate reductase (EC 1.6.5.4) was purified from cucumber fruit to a homogeneous state as judged by polyacrylamide gel electrophoresis. The cucumber monodehydroascorbate reductase was a monomer with a molecular weight of 47,000. It contained 1 mol of FAD/mol of enzyme which was reduced by NAD(P)H and reoxidized by monodehydroascorbate. The enzyme had an exposed thiol group whose blockage with thiol reagents inhibited the electron transfer from NAD(P)H to the enzyme FAD. Both NADH and NADPH served as electron donors with Km values of 4.6 and 23 microM, respectively, and Vmax of 200 mol of NADH and 150 mol of NADPH oxidized mol of enzyme-1 s-1. The Km for monodehydroascorbate was 1.4 microM. The amino acid composition of the enzyme is presented. In addition to monodehydroascorbate, the enzyme catalyzed the reduction of ferricyanide and 2,6-dichloroindophenol but showed little reactivity with calf liver cytochrome b5 and horse heart cytochrome c. The kinetic data suggested a ping-pong mechanism for the monodehydroascorbate reductase-catalyzed reaction. Cucumber monodehydroascorbate reductase occurs in soluble form and can be distinguished from NADPH dehydrogenase, NADH dehydrogenase, DT diaphorase, microsome-bound NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase by its molecular weight, amino acid composition, and specificity of electron acceptors and donors.  相似文献   

7.
A genetically engineered fusion enzyme between rat P4501A1 and yeast P450 reductase in the microsomal fraction of the recombinant yeast AH22/pAFCR1 was purified. The purified enzyme showed a typical CO-difference spectrum of P4501A1 and a single band with an apparent molecular weight of 125,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This agreed with the molecular weight of 131,202 calculated from the amino acid sequence. The purified enzyme showed both 7-ethoxycoumarin o-deethylase activity and horse heart cytochrome c reductase activity in the presence of NADPH. The 7-ethoxycoumarin o-deethylase activity depended on the species of lipid used for the reconstitution of the purified fusion enzyme although the purified enzyme showed the activity without reconstitution. The purified fusion enzyme had the Km value of 26 microM for 7-ethoxycoumarin and the maximal turnover rate of 29 mol product/min/mol enzyme at 30 degrees C.  相似文献   

8.
Yaba virus proteins were characterized by polyacrylamide gel electrophoresis. Electrophoresis of Yaba virion (proteins) dissociated by sodium dodecyl sulfate and 2-mercaptoethanol in continuous and discontinuous buffer systems yielded 37 polypeptide species by staining and by counting bands of radioactively labeled polypeptides. The molecular weights of the viral polypeptide species were found to range from 10,000 to 220,000 by comparing the relative distance of migration of viral proteins with proteins of known molecular weights. Two polypeptides were removed from purified virions by nonionic detergent nonidet P -40 treatment, and the amount of one polypeptide was reduced. Purified cores yielded 21 polypeptide species, none of which was labeled with radioactive glucosamine.  相似文献   

9.
A simple method is described for the isolation of crystalline pyruvate kinase from human skeletal muscle. The enzyme was purified by ammonium sulfate fractionation, heat treatment and crystallization. Two crystal forms of pyruvate kinase differing in solubility but not in specific activity were found. The homogenous enzyme preparations in triethanolamine buffer, pH 7.6 reveal at 25 degrees a specific activity of 245 U per mg protein, and of 340 U/mg in potassium phosphate buffer (50 mM). The enzyme is activated by inorganic phosphate and fructosediphosphate to the same extent, and inhibited non competetively by ammonium ion. The molecular weight as measured by gel filtration is 220,000 daltons and the enzyme molecule is composed of 4 subunits.  相似文献   

10.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

11.
A procedure is described for the purification of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate:NADP oxidoreductase (decarboxylating) EC 1.1.1.44) from cell extracts of Streptococcus gaecalis. A 180-fold purification was achieved with an over-all yield of about 12% and an average specific activity of 14. The enzyme was homogeneous as determined by polyacrylamide gel electrophoresis, immunoelectrophoresis, and sedimentation equilibrium, studies. Its weight average molecular weight, as measured by sedimentation equilibrium, was 108,000 +/- 3,600. Other methods employed for molecular weight determinations gave values that ranged between 106,000 and 115,000. An analysis of the enzyme by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed it to be a dimer composed of subunits having equal molecular weight. The amino acid composition of the streptococcal enzyme is reported. The apparent Km values for NADP and 6-phosphogluconate were calculated from kinetic data and found to be 0.015 mM and 0.024 mM, respectively. Kinetic studies also indicated that the binding of one substrate did not affect the apparent affinity of the enzyme for the other substrate.  相似文献   

12.
Crude extracts of Methanospirillum hungatei strain GP1 contained NADH and NADPH diaphorase activities. After a 483-fold purification of the NADH diaphorase the enzyme was further separated from contaminating proteins by polyacrylamide disc gel electrophoresis. Two distinct activity bands were extracted from the acrylamide, each one having oxygen, 2,6-dichlorophenolindophenol, and cytochrome c linked activities. In these preparations NADPH could not replace NADH as electron donor. During the initial purification steps all activity was lost due to the removal of a readily released cofactor. Enzyme activity was restored by either FAD or a FAD fraction isolated from M. hungatei. Oxidase activity exhibited a broad pH optimum from 7.0 to 8.5 and apparent Km values of 26 microM for NADH and 0.2 microM for FAD. Superoxide anion, formed in the presence of oxygen, accounted for all of the NADH consumed in the reaction. The molecular weight of the diaphorase was about 117 500 by sodium dodecyl sulfate gel electrophoresis. Sulfhydryl reagents and chelating agents were inhibitory. Inactivation, which occurred during storage in phosphate buffer at 4 degrees C, was delayed by dithiothreitol. The isolated NADH diaphorase lacked NADPH:NAD transhydrogenase and NAD reductase activities.  相似文献   

13.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

14.
Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.  相似文献   

15.
A photosynthetic c-type cytochrome, cytochrome c6, was extracted from a green alga, Bryopsis maxima, by cutting and immersing the frozen thalli in phosphate buffer, pH 7.0, and purified by acrinol treatment, ammonium sulfate fractionation, DEAE-Sephacel chromatography and Bio-Gel P-10 gel filtration. The ferrcytochrome c6 has absorption maxima at 553.5 (alpha), 523 (beta), 417 (gamma), 318 (delta), and 275 nm, and the ferricytochrome at 695, 528, and 411 (gamma). The molecular weight was estimated to be about 10,000 from Sephadex G-75 gel filtration and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The midpoint redox potential for the cytochrome was determined by equilibrium titration with a ferro- and ferricyanide system to be 0.385 volt at pH 7.0. Isoelectric points for ferro- and ferricytochromes were determined by density gradient isoelectric focusing electrophoresis to be at pH 3.91 and 4.02, respectively. The complete amino acid sequence of the cytochrome was determined by Edman degradation and by carboxypeptidase digestions of the Cm-cytochrome, 6 staphylococcal protease peptides and 5 lysyl endopeptidase peptides. The cytochrome contained 88 amino acid residues, giving a molecular weight of 9,904 including 1 mol of heme c. The sequence is as follows: GGDLEIGADVFTGNCAACHAGGANSVEPLKTLNKEDVTKYLDGGLSIEAITSQVRNGKGAMPAWSDRLD DEEIDGVVAYVFKNINEGW. A phylogenetic tree of 13 algal cytochromes c6 was constructed by comparing the amino acid differences.  相似文献   

16.
A facile and rapid purification procedure, based upon the heat denaturation of extraneous proteins and GMP-Sepharose affinity chromatography, has been used to purify hypoxanthine phosphoribosyltransferase from human brain. A homogeneous enzyme preparation, as judged by sodium dodecyl sulfate and gradient polyacrylamide gel electrophoresis, was obtained. The subunit molecular weight of the enzyme was estimated as 24,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native molecular weight, determined by gradient gel electrophoresis, was approximately 100,000. These results suggest human brain hypoxanthine phosphoribosyltransferase is a tetramer, consistent with recent results reported for the human erythrocyte enzyme. At least three charge variant forms of the human brain enzyme were distinguished by nondenaturing polyacrylamide gel electrophoresis, electrofocusing, and chromatofocusing. Acidic pI values of approximately 5.7, 5.5, and 5.0 were estimated for the three major species.  相似文献   

17.
Ammonia- and N-acetylglutamate-dependent carbamyl phosphate synthetase-I (EC 2.7.2.5), the mitchondrial enzyme involved in the initial step of urea biosynthesis, was purified to homogeneity from frog liver and crystallized. The purification involved extraction of a particulate fraction with cetyltrimethylammonium bromide in the presence of the protease inhibitors antipain, leupeptin, chymostatin, and pepstatin; acetone precipitation; and affinity chromatography with Cibacron blue F3GA-coupled agarose. The enzyme was adsorbed to the gel at pH 8.3 in the presence of 5 mM MgCl2 and eluted with magnesoum-free buffer. The enzyme crystallized as either elongated, thin, rectangular plates or as clusters of small crystals from 37 to 40% saturated ammonium sulfate. The enzyme moved as a single polypeptide band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis with a molecular weight of 160,000. In the absence of protease inhibitors, proteolysis of the enzyme occurred with the formation of an enzymatically active fragment with a subunit molecular weight of 139,000.  相似文献   

18.
The tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate-phosphorylating), EC 4.2.1.15) was purified to homogeneity from extracts of Escherichia coli K12. A spectrophotometric assay of the enzyme activity, based on the absorption difference of substrates and products at 232 nm, was developed. The enzyme has a molecular weight of 66,000 as judged by gel filtration on Sephadex G-200, and a subunit molecular weight of 39,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This suggests either a rapid monomer-dimer equilibrium, or a very asymmetric shape for the native enzyme. The enzyme shows a narrow pH optimum around pH 7.0. The enzyme is stable for several months when stored at -20 degrees in phosphate buffer containing phosphoenol-pyruvate. Intersecting lines in double reciprocal plots of initial velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism with-catalyzed reaction. Product inhibition studies specify an ordered sequential BiBi mechanism with a dead-end E-P complex. The feedback inhibitor tyrosine at concentrations above 10 muM exhibits noncompetitive inhibition with respect to erythrose-4-P, and competitive inhibition with respect to the other substrate, P-enolpyruvate. In addition, tyrosine at concentrations of at least 10 muM causes an alteration of one or more than one kinetic parameter of the enzyme.  相似文献   

19.
The primary amine dehydrogenase of Pseudomonas putida NP was purified to homogeneity as judged by polyacrylamide gel electrophoresis. Cytochrome c or an artificial electron acceptor was required for amine dehydrogenase activity. The enzyme was nonspecific, readily oxidizing primary monoamines, benzylamine, and tyramine; little or no measurable activity was detected with isoamines, L-ornithine, L-lysine, and certain diamines or polyamines. The pH optima for n-butylamine, benzylamine, and n-propylamine were 7.0, 6.5, and 7.0, respectively. The molecular weight of the enzyme was 112,000 as determined by gel filtration and 95,300 as analyzed by sedimentation equilibrium. Subunit analysis by sodium dodecyl sulfate gel electrophoresis suggested that the enzyme was composed of two nonidentical subunits with molecular weights of 58,000 and 42,000. The absorption spectrum of the purified enzyme was indicative of a hemoprotein, exhibiting absorption maxima at 277, 355, and 408 nm. Reduction with sodium dithionite or amine substrates resulted in absorption maxima at 523 and 552 nm and a shift in the Soret peak to 416 nm. These results suggested that the enzyme is a hemoprotein of the type c cytochrome. There was no evidence that flavins were present.  相似文献   

20.
Phosphoribosylpyrophosphate (PRPP) synthetase (EC 2.7.6.1) was purified to virtual homogeneity from Salmonella typhimurium cells by a modification of previously published procedures. The molecular weight of the subunit was determined to be 31,000 +/- 3,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium analysis of the enzyme dissolved in 6 M guanidine hydrochloride. The amino acid composition of the enzyme was determined. Proline was identified as the only NH2-terminal residue. PRPP synthetase is apparently composed of identical or nearly identical subunits. NATIVE PRPP synthetase exists in multiple states of aggregation under all conditions. However, two predominant states were demonstrated under certain conditions. A form with molecular weight of 320,000 +/- 20,000 was found at pH 7.5 in the presence of MgATP. At pH 8.2 to 8.6, with or without MgATP, the predominant form corresponded to a molecular weight of 150,000 to 200,000; sedimentation equilibrium and velocity analysis indicated 160,000 +/- 15,000 as the most reliable molecular weight. More highly aggregated forms were observed at 4 degrees and higher protein concentrations. Removal of inorganic phosphate from PRPP synthetase by dilution or dialysis resulted in disaggregation. The fundamental unit of PRPP synthetase appears to consist of five (or possibly six) subunits, which can associate to form a dimer (10 or 12 subunits) and more highly aggregated forms. A pentameric subunit structure is consistent with the multiple species resolved by electrophoresis of the native enzyme in discontinuous polyacrylamide gel systems. Visualization of PRPP synthetase by negative staining with uranyl acetate and electron microscopy revealed fields of very asymmetric molecules, the dimensions of which corresponded to the M = 160,000 form. Dimers and higher aggregates of this unit were also seen. An unusual model, in which the five subunits are asymmetrically arranged, accounts very well for the electron microscopic appearance of the enzyme. The tendency of the enzyme to aggregate is viewed as a consequence of the unsatisfied bonding regions of the fundamental asymmetric unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号