首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene PHO5 coding for one of the repressible acid phosphatases of the yeastSaccharomyces cerevisiae has been expressed at high efficiency in the baby hamster kidney (BHK) cell line. The expression vector was constructed from PHO5 driven by the human -actin promoter and was transfected into BHK cells by the calcium phosphate method. The recombinant APase (r-APase) which was secreted in active form from the cells was estimated by SDS/polyacrylamide gel electrophoresis to have molecular massM r=62000, indicating substitution of the polypeptide moiety by 2–3 asparagine-linked glycans. Analysis by sequential lectin affinity chromatography of glycopeptides obtained from r-APase with Pronase showed that the glycans are predominantly of the 2.2.4 triantennary and tetraantennary complex-type. These data suggest that the extensive glycosylation of yeast APase, which contains eight polymannose substituents, is not essential for secretion and expression of enzymatic activity of the transfected gene product.Abbreviations APase acid phosphatase - PBS phosphate buffered saline - TBS Tris buffered saline - con A concanavalin A - TCA Tetracarpidium conophorum agglutinin  相似文献   

2.
Summary Caco-2 cell human colon adenocarcinoma cell line was used to study the hormonal regulation of small intestinal epithelial cell differentiation. We had previously shown that insulin-transferrin-selenium and triiodothyronine (5 × 10−8 M)-supplemented medium can best replace serum after 2 days of culture for both the maintenance and differentiation of Caco-2 cells. The present study demonstrates that precoating petri dishes with complete serum allows the growth and differentiation of Caco-2 cells seeded directly in serum-free medium. On the other hand, precoating with dialyzed serum inhibits alkaline phosphatase and dipeptidyl-dipeptidase IV activities by more than 50%. The results obtained with complete serum-precoated culture plates indicate that there is no synergy between insulin and triiodothyronine because cells maintained in transferrin-selenium and triiodothyronine-supplemented medium, with or without insulin, express comparable enzyme activities. Moreover, large increases in alkaline phosphatase and dipeptidyl-dipeptidase IV activities were observed when triiodothyronine was added to the culture medium by the time confluency was reached. In contrast, γ-glutamyltransferase was lowered to a greater extent when triiodothyronine was present from the beginning of culture. These findings show that triiodothyronine preferentially stimulates alkaline phosphatase and dipeptidyl-dipeptidase IV activities during the differentiation period whereas it selectively inhibits γ-glutamyltransferase during the proliferation phase. Triiodothyronine acts in a dose-dependent manner.  相似文献   

3.
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

4.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   

5.
Plasma membrane extracts from Herpes simplex virus type 1 transformed hamster embryo fibroblasts were chromatographed on Lens culinaris lectin coupled to Sepharose (LcH-Sepharose) and analysed by dodecyl sulphate polyacrylamide gel electrophoresis. Coomassie blue-staining revealed two major protein bands with apparent molecular weights of 125 000 and of about 75 000–90 000. In plasma membranes isolated from these tumor cells prior labeled with [3H]fucose or [3H]glucosamine these bands contained the highest amounts of incorporated radioactivity. Separation by LeH-Sepharose-affinity chromatography as well as metabolic labeling clearly demonstrates their glycoprotein character. The 125 000 protein coincides with alkaline phosphodiesterase I activity with a Km of 6 · 10?4 M for TMP p-nitrophenyl ester and is competitively inhibited by UDP-N-acetylglucosamine. This enzymatic activity is also present in normal hamster embryo fibroblasts. Gel electrophoresis of the Lens culinaris lectin-binding glycoproteins from plasma membranes of normal hamster embryo fibroblasts additionally revealed a strong alkaline phosphatase activity represented by an apparent molecular weight of 150 000, while HSV1 hamster tumor cells contain only a very weak activity of this enzyme activity. HSV-lytically infected cells, however, have unchanged levels of alkaline phosphatase activity, whereas alkaline phosphodiesterase activity increases slightly.  相似文献   

6.
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25–200 μM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50 μM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO, were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations ≥50 μM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.  相似文献   

7.
Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells   总被引:12,自引:0,他引:12  
Echinocystic acid (EA), a natural triterpone enriched in various herbs, has been showed to have cytotoxic activity in some cancer cells, and is used for medicinal purpose in many Asian countries. In the present study, we found that EA could induce apoptosis in human HepG2 cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed at 45 microM for 24 h. Molecular data showed that EA induced the truncation of Bid protein and reduction of Bcl-2 protein. EA also caused the loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release from mitochondria to cytosol. Moreover, EA could activate c-Jun NH(2)-terminal kinase (JNK) and p38 kinase, and JNK-specific inhibitor SP600125 and p38 kinase-specific inhibitor SB200235 could block serial molecular events of EA-induced apoptosis such as Bid truncation, Bcl-2 reduction, cytochrome c release, caspase activation, and DNA fragmentation in HepG2 cells. These findings indicate that JNK- and p38 kinase-mediated mitochondrial pathways might be involved in EA-induced apoptosis and enhance our understanding of the anticancer function of EA in herbal medicine.  相似文献   

8.
9.
The effect of a rise in dopamine (DA) level as a result of a mutation, stress or pharmacological treatment on the activity of the enzyme of its synthesis, alkaline phosphatase (ALP) in females of Drosophila virilis and Drosophila melanogaster has been studied. It has been found that regardless of its nature, a rise in DA level has a negative effect on ALP activity, which indicates that DA down-regulates activity of the enzyme. The effects of bromocriptine (an agonist of Drosophila dopamine 2-like receptor (DD2R)) on ALP activity have been studied. ALP activity was found to drop in response to bromocriptine in flies. Conversely ALP activity was increased in flies with reduced DD2R expression (i.e. Actin5C-Gal4 > UAS-ds-DD2R RNA-interference flies) vs. corresponding controls (i.e. Actin5C-Gal4 > w1118 flies). Bromocriptine treatment of RNAi flies rescues ALP activity to the level typical of Actin5C-Gal4 > w1118 flies. A change in DD2R number or availability was found not to prevent the response of ALP to heat stress, but to change the intensity of its response to the stress exposure. The role of D2-like receptors in down-regulation of ALP activity by DA and in ALP response to stressor in Drosophila is discussed.  相似文献   

10.
Human urinary bladder carcinoma cells (JTC-32) retain a low alkaline phosphatase activity. Prednisolone or a hypertonic concentration of NaCl caused a moderate increase in the activity (10- to 15-fold of control), but dibutyryl cAMP or butyrate did not. Examination of the combined effect of these four agents revealed that they acted synergistically in any combination. When the cells were incubated with the four agents together, the enzyme activity increased 60- to 250-fold. Serum also contributed to this synergistic increase. These agents slightly inhibited cell growth and protein synthesis. The enzyme induction was completely inhibited by cycloheximide or actinomycin D. The synergistic effect of the four agents on the enzyme activity was also observed in other strains of carcinoma cells, human urinary bladder carcinoma cells (JTC-30) and monkey hepatocarcinoma cells (NCLP-6E). Thus, it is concluded that the coexistence of the four agents provides general and superior conditions for the induction of alkaline phosphatase in cultured carcinoma cells.  相似文献   

11.
The membrane glycoprotein enzyme, alkaline phosphatase was induced in cultured human fibroblasts by dibutyryl cyclic AMP, sodium butyrate, the serum glycoprotein fetuin, the Tamm-Horsfall urinary glycoprotein, and by a number of inhibitors of DNA synthesis. The uninduced basal enzyme activity increased at later stages of growth when the cells became confluent. Induction by dibutyryl cyclic AMP or fetuin was most effective when the agents were added after the cells had reached stationary phase and was maximal after at least two days of exposure. The levels of induction resulting from the addition of pairs of the agents, dibutyryl cyclic AMP, n-butyrate and fetuin were additive indicating that these have different modes of action. The inhibitors of DNA synthesis, cytosine arabinoside, hydroxyurea, and methothrexate were less effective inducers. Bromodeoxyuridine which also has non-DNA mediated effects induced to the same extent as dibutyryl cyclic AMP.Similar experiments with sex- and age-matched cell strains derived from patients with cystic fibrosis failed to detect differences in the levels of induction from those observed in normal cells. In addition, the combined inductive effects of Tamm-Horsfall glycoprotein, isoproterenol and theophylline, were similar with normal and cystic fibrosis cells.  相似文献   

12.
Low‐frequency (LF) electric fields (EFs) are currently used in clinical therapies of several bone diseases to increase bone regenerative processes. To identify possible molecular mechanisms involved in these processes, we evaluated the effects on cell cultures of 1 h exposures to the signal generated by an apparatus of current clinical use (frequency 60 kHz, frequency of the modulating signal 12.5 Hz, 50% duty cycle, peak‐to‐peak voltage 24.5 V). Two different human cell lines, bone SaOS‐2 and liver HepG2, were used. Exposures significantly increased alkaline phosphatase (ALP) enzymatic activity in both cell lines. The increase was about 35% in SaOS‐2 cells and about 80% in HepG2 cells and occurred in the first 4 h after exposure and decreased to almost no change by 24 h. Since ALP represents a typical marker of bone regeneration, these results represent a first molecular evidence of biological effects from 60 kHz EF exposures. The finding of similar effects in cells derived from two different tissues more likely indicates the effective operation of the mechanism in living organisms. Bioelectromagnetics 32:113–119, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
3-D cell culture models are important in cancer biology since they provide improved understanding of tumor microenvironment. We have established a 3-D culture model using HepG2 in natural collagen-based scaffold to mimic the development of small avascular tumor in vivo. Morphological characterization showed that HepG2 colonies grew within the interior of the scaffold and showed enhanced extracellular matrix deposition. High levels of cell proliferation in the outermost regions of the scaffold created a hypoxic microenvironment in the 3-D culture system, as indicated by hypoxia-inducible factor-1α stabilization, detectable by Western blotting and immunohistochemistry. Proteomic studies showed decreased expression of several mitochondrial proteins and increased expression of proteins in anaerobic glycolysis under 3-D culture compared to monolayer culture. Creatine kinase was also upregulated in 3-D culture, indicating its possible role as an important energy buffer system under hypoxic microenvironment. Increased levels of proteins in nucleotide metabolism may relate to cellular energy. Thus, our results suggest that HepG2 cells under 3-D culture adapt their energy metabolism in response to hypoxic conditions. Metabolic alterations in the 3-D culture model may relate to physiological changes relevant to development of small avascular tumor in vivo and their study may improve future therapeutic strategies.  相似文献   

14.
Ellagic acid has been shown to improve cholesterol metabolism in animal studies, but the molecular mechanisms underlying this function have not been fully understood. We performed DNA microarray analysis to elucidate the effects of ellagic acid on cholesterol metabolism in HepG2 hepatocytes. This revealed that the expression levels of several genes related to cholesterol metabolism, including the low-density lipoprotein receptor (LDLR), were changed by ellagic acid treatment. Using a real-time PCR and immunoblot we confirmed that ellagic acid treatment up-regulated mRNA and protein expression level of the LDLR. Moreover, In the presence of 25 μM ellagic acid, extracellular apoB protein and MTP mRNA levels were significantly decreased. These findings indicate that ellagic acid improves cholesterol metabolism through the up-regulation of LDLR, down-regulation of MTP mRNA and reduces extracellular apoB levels. The ellagic acid-induced up-regulation of LDLR occurred via the extracellular signal-regulated kinase (ERK) signaling pathway in HepG2 hepatocytes.

Abbreviations: LDLR: low-density lipoprotein receptor; apoB: apolipoprotein B; PKC: diacylglycerol-protein kinase C; MAPK: mitogen-activated protein kinase; ERK: p42/44 extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; VLDLR: very low density lipoprotein receptor; PPARδ: peroxisome proliferator-activated receptor δ; SREBPs: sterol regulatory element-binding proteins; MTP: microsomal triacylglycerol transfer protein; LPDS: lipoprotein-deficient serum  相似文献   


15.
Of the six distinct isoforms of mouse protein phosphatase 2C (PP2C) (α, β-1, β-2, β-3, β-4 and β-5), PP2Cα was specifically phosphorylated on the serine residue(s) when expressed in COS7 cells. Analysis of phosphorylation sites using site-directed mutagenesis demonstrated that Ser-375 and/or Ser-377 were phosphorylated in vivo. These serine residues were the sites of phosphorylation by casein kinase II in vitro. Phosphorylation of PP2Cα was enhanced two-fold by the addition of okadaic acid to the culture medium, but addition of cyclosporin A had no such effect. These results suggest that the expressed PP2Cα is phosphorylated by a casein kinase II-like protein kinase and dephosphorylated by PP1 and/or PP2A in COS7 cells.  相似文献   

16.
The occurrence, characteristics and response to environmental salinity of alkaline phosphatase (AP) activity were studied in chela muscle of the euryhaline crab Chasmagnathus granulatus from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). Chela muscle exhibited a levamisole-insensitive and a levamisole-sensitive AP activities with distinct characteristics. Levamisole-insensitive activity appeared to be maximal at pH 7.7, whereas levamisole-sensitive AP activity was similar with the range of pH 7.4 to 8.0. Both activities at pH 7.7 exhibited a Michaelis-Menten kinetics (Km = 0.789 and 1.416 mM, respectively). I50 for levamisole-sensitive AP activity was about 12 mM. Levamisole-insensitive and levamisole-sensitive AP activities were differentially affected by temperature. Levamisole-sensitive AP activity was quite sensitive to temperature, exhibiting a peak at 37 °C but being low at 5 to 30 °C and 45 to 60 °C. Both activities were inhibited by Cu2+. At 1.0 mM Cu2+, levamisole-insensitive AP activity was inhibited about 82% whereas levamisole-sensitive AP activity was almost completely inhibited. Levamisole-insensitive AP activity appeared to be sensitive to environmental salinity. In crabs acclimated to low salinity (10‰) this activity was lower than in 35‰ salinity. The response to environmental salinity suggests that levamisole-insensitive AP activity could be a component of muscle regulatory mechanisms at the biochemical level secondary to hyperregulation of C. granulatus. The possible physiological roles and functional relationship of AP activity with Na+/K+ ATPase in muscle are discussed.  相似文献   

17.
18.
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of different cell culture conditions on N‐glycosylation site‐occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t‐PA) and a recombinant enzyme (glycoprotein 2—GP2). Both molecules contain a N‐glycosylation site that is variably occupied. Different environmental factors that affect the site‐occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t‐PA (type I t‐PA) by approximately 2.5–4%. Decreasing the cultivation temperature from 37 to 33°C or 31°C gradually increased site‐occupancy of t‐PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site‐occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site‐occupancy of t‐PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N‐glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site‐occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N‐glycan site‐occupancy within a specific range. An increase in culture pH correlated with a decrease in site‐occupancy. Similarly, delaying the timing for butyrate addition also decreased site‐occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N‐glycan site‐occupancy, within a specific range when applied appropriately. Biotechnol. Bioeng. 2009;103: 1164–1175. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号