首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of nitric oxide (NO) and reactive oxygen species (ROS) in regulating capillary perfusion was studied in the hamster cheek pouch model during normoxia and after 20 min of exposure to 10% O2-90% N2. We measured PO2 by using phosphorescence quenching microscopy and ROS production in systemic blood. Identical experiments were performed after treatment with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) and after the reinfusion of the NO donor 2,2'-(hydroxynitrosohydrazono)bis-etanamine (DETA/NO) after treatment with L-NMMA. Hypoxia caused a significant decrease in the systemic PO2. During normoxia, arteriolar intravascular PO2 decreased progressively from 47.0 +/- 3.5 mmHg in the larger arterioles to 28.0 +/- 2.5 mmHg in the terminal arterioles; conversely, intravascular PO2 was 7-14 mmHg and approximately uniform in all arterioles. Tissue PO2 was 85% of baseline. Hypoxia significantly dilated arterioles, reduced blood flow, and increased capillary perfusion (15%) and ROS (72%) relative to baseline. Administration of L-NMMA during hypoxia further reduced capillary perfusion to 47% of baseline and increased ROS to 34% of baseline, both changes being significant. Tissue PO2 was reduced by 33% versus the hypoxic group. Administration of DETA/NO after L-NMMA caused vasodilation, normalized ROS, and increased capillary perfusion and tissue PO2. These results indicate that during normoxia, oxygen is supplied to the tissue mostly by the arterioles, whereas in hypoxia, oxygen is supplied to tissue by capillaries by a NO concentration-dependent mechanism that controls capillary perfusion and tissue PO2, involving capillary endothelial cell responses to the decrease in lipid peroxide formation controlled by NO availability during low PO2 conditions.  相似文献   

2.
Endothelial (eNOS) and neuronal nitric oxide synthase (nNOS) are implicated as important contributors to cerebral vascular regulation through nitric oxide (NO). However, direct in vivo measurements of NO in the brain have not been used to dissect their relative roles, particularly as related to oxygenation of brain tissue. We found that, in vivo, rat cerebral arterioles had increased NO concentration ([NO]) and diameter at reduced periarteriolar oxygen tension (Po(2)) when either bath oxygen tension or arterial pressure was decreased. Using these protocols with highly selective blockade of nNOS, we tested the hypothesis that brain tissue nNOS could donate NO to the arterioles at rest and during periods of reduced perivascular oxygen tension, such as during hypotension or reduced local availability of oxygen. The decline in periarteriolar Po(2) by bath manipulation increased [NO] and vessel diameter comparable with responses at similarly decreased Po(2) during hypotension. To determine whether the nNOS provided much of the vascular wall NO, nNOS was locally suppressed with the highly selective inhibitor N-(4S)-(4-amino-5-[aminoethyl]aminopentyl)-N'-nitroguanidine. After blockade, resting [NO], Po(2), and diameters decreased, and the increase in [NO] during reduced Po(2) or hypotension was completely absent. However, flow-mediated dilation during occlusion of a collateral arteriole did remain intact after nNOS blockade and the vessel wall [NO] increased to approximately 80% of normal. Therefore, nNOS predominantly increased NO during decreased periarteriolar oxygen tension, such as that during hypotension, but eNOS was the dominant source of NO for flow shear mechanisms.  相似文献   

3.
We have studied the conditions under which a perfluorocarbon emulsion of perfluorooctyl bromide (PFOB; Alliance Pharmaceutical, San Diego, CA) enhances tissue O2 delivery. Measurements of retinal tissue O2 tension (PO2) were made in anesthetized, artificially respirated, dark-adapted, normovolemic cats before, during, and after the infusion of three successive doses of 1 g PFOB/kg body wt each. There was little immediate effect of the infusion on the tissue PO2 when the cats were breathing room air, but the mean increase in tissue PO2 during 100% O2 breathing was 60 +/- 9% (SE; n = 8 cats) greater after infusion of 1 g PFOB/kg and approximately 136% greater after 3 g PFOB/kg. Similar infusions of the emulsifying medium alone had negligible effects on tissue PO2. These results suggest that PFOB emulsion may be clinically useful in treating tissue hypoxia in normovolemic patients breathing O2-enriched air.  相似文献   

4.
In 12 experiments on 9 chronically-cathetized pregnant sheep (116-143 days of gestation), fetal oxygen consumption, umbilical blood flow and blood gas values were measured before, during and after a 30-min period of hypercapnia, induced by having the ewes breathe 5% CO2 and 18% O2 in N2. During the large amplitude breathing stimulated by hypercapnia, O2 consumption increased by 21%, solely via a rise in O2 extraction. During apnoeic periods and low amplitude breathing in the hypercapnia period, oxygen consumption was not different from the control value, but fetal arterial and umbilical venous PO2 was significantly raised, by 3 and 6 mm Hg respectively. These changes were probably due to a Bohr shift in the maternal oxygen dissociation curve. During large amplitude breathing, PO2 fell to control levels, probably due in part to the increase in O2 extraction. It is concluded that vigorous breathing movements in the fetal sheep, such as those stimulated by hypercapnia, result to an increase in fetal O2 demands. Further, the work of such breathing is large, and probably equivalent to that performed in adults during vigorous hyperventilation against an inspiratory resistance.  相似文献   

5.
The rate of oxygen release from arterioles ( approximately 55 microm diameter) was measured in the hamster window chamber model during flow and no-flow conditions. Flow was stopped by microvascular transcutaneous occlusion using a glass pipette held by a manipulator. The reduction of the intra-arteriolar oxygen tension (Po2) was measured by the phosphorescence quenching of preinfused Pd-porphyrin, 100 microm downstream from the occlusion. Oxygen release from arterioles was found to be 53% greater during flow than no-flow conditions (2.6 vs. 1.7 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). Acute hemodilution with dextran 70 was used to reduce vessel oxygen content, significantly increase wall shear stress (14%, P < 0.05), reduce Hct to 28.4% (SD 1.0) [vs. 48.8% (SD 1.8) at baseline], lower oxygen supply by the arterioles (10%, P < 0.05), and increase oxygen release from the arterioles (39%, P < 0.05). Hemodilution also increased microcirculation oxygen extraction (33% greater than nonhemodilution, P < 0.05) and oxygen consumption by the vessel wall, as shown by an increase in vessel wall oxygen gradient [difference in Po2 between the blood and the tissue side of the arteriolar wall, nonhemodiluted 16.2 Torr (SD 1.0) vs. hemodiluted 18.3 Torr (SD 1.4), P < 0.05]. Oxygen released by the arterioles during flow vs. nonflow was increased significantly after hemodilution (3.6 vs. 1.8 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). The oxygen cost induced by wall shear stress, suggested by our findings, may be >15% of the total oxygen delivery to tissues by arterioles during flow in this preparation.  相似文献   

6.

Purpose

To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.

Methods

Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery).

Results

Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001).

Conclusions

Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.  相似文献   

7.
To examine the effects of vascular tone reduction on O2 consumption of the vascular wall, we determined the O2 consumption rates of arteriolar walls under normal conditions and during vasodilation induced by topical application of papaverine. A phosphorescence quenching technique was used to quantify intra- and perivascular PO2 in rat cremaster arterioles with different branching orders. Then, the measured radial PO2 gradients and a theoretical model were used to estimate the O2 consumption rates of the arteriolar walls. The vascular O2 consumption rates of functional arterioles were >100 times greater than those observed in in vitro experiments. The vascular O2 consumption rate was highest in first-order (1A) arterioles, which are located upstream, and sequentially decreased downstream in 2A and 3A arterioles under normal conditions. During papaverine-induced vasodilation, on the other hand, the O2 consumption rates of the vascular walls decreased to similar levels, suggesting that the high O2 consumption rates of 1A arterioles under normal conditions depend in part on the workload of the vascular smooth muscle. These results strongly support the hypothesis that arteriolar walls consume a significant amount of O2 compared with the surrounding tissue. Furthermore, the reduction of vascular tone of arteriolar walls may facilitate an efficient supply of O2 to the surrounding tissue.  相似文献   

8.
Metabolic models of microcirculatory regulation.   总被引:2,自引:0,他引:2  
The functions and integrity of body tissues are critically dependent on an adequate oxygen supply. Because the transport of oxygen to the cells is intimately linked to the microcirculation, the concept of microcirculation-metabolism coupling has received much attention. In essence, the metabolic theory of intrinsic control of the microcirculation states that microvascular tone is locally modulated to maintain adequate oxygen levels in the parenchymal cells. We propose a two-component control system for the regulation of tissue O2 delivery in accordance with metabolic needs. A precapillary sphincter control mechanism maintains tissue PO2 by governing the number of perfused capillaries. Functional capillary density in turn determines surface area available for diffusion and capillary-to-cell diffusion distance. On the other hand, the arteriolar control system modulates local blood flow in accordance with parenchymal O2 utilization and thereby minimizes changes in capillary PO2 when the O2 availability/demand ratio is decreased. We propose that the precapillary sphincters are more sensitive to changes in tissue PO2 than are the flow-regulating arterioles. Consequently, for mild stresses, adequate tissue oxygenation is maintained mainly by precapillary sphincter control of diffusion parameters without the need for changes in blood flow. However, as metabolic stresses become greater, blood flow regulation becomes the dominant factor in the control of tissue O2 delivery. Thus, by working in concert, the local mechanisms regulating microvascular resistance and effective capillary density provide a wide margin of safety against the development of cellular hypoxia.  相似文献   

9.
Our hypothesis was that a large fraction of resting nitric oxide (NO) formation is driven by flow-mediated mechanisms in the intestinal microvasculature of the rat. NO-sensitive microelectrodes measured the in vivo perivascular NO concentration ([NO]). Flow was increased by forcing the arterioles to perfuse additional nearby arterioles; flow was decreased by lowering the mucosal metabolic rate by reducing sodium absorption. Resting periarteriolar [NO] of large arterioles (first order; 1A) and intermediate-sized arterioles (second order; 2A) was 337 +/- 20 and 318 +/- 21 nM. The resting [NO] was higher than the dissociation constant for the NO-guanylate cyclase reaction of vascular smooth muscle; therefore, resting [NO] should be a potent dilatory signal at rest. Over flow velocity and shear rate ranges of approximately 40-180% of control, periarteriolar [NO] changed 5-8% for each 10% change in flow velocity and shear rate. The relationship of [NO] to flow velocity and shear rate demonstrated that 60-80% of resting [NO] depended on flow-mediated mechanisms. Therefore, moment-to-moment regulation of [NO] at rest is an ongoing process that is highly dependent on flow-dependent mechanisms.  相似文献   

10.
Anesthetized spontaneously breathing rats, fitted with epicortical electrodes and catheters for sampling arterial, venous, and cerebral venous blood, were exposed to standardized progressive hypoxia. Three minutes of hypoxia sequentially caused hyperpnea, hypopnea, apnea, and cessation of electrocorticogram "spiking," of synchronization, and of background in electroencephalogram (EEG). Blood data and cerebral blood flow and metabolism were measured throughout and at "insults," i.e., at apnea and cessation events, to clarify their interdependence. Arterial and brain venous PO2 fell linearly with inspired oxygen (final value of 2% at 280 s). Hyperpnea induced arterial alkalosis; subsequent hypopnea led to near-normal PCO2 and pH when EEG ceased. Hypercapnia was more pronounced in cerebral than in systemic venous blood; time courses of pH changes were similar. Sagittal sinus blood pressure and outflow were linearly related and resembled the time course of local cerebral blood flow. Blood flow increased by 25% at apnea and only 60% at EEG silence. Cerebral metabolic rate of O2 rose during the hyperpnea phase and fell exponentially thereafter. Cerebral glucose uptake and lactate release increased within the first 3 min but fell abruptly when cortico-electric spiking ceased. Time courses of cerebral O2 consumption and spike rate were linearly related; both showed inverse linear relations to cerebral perfusion. The hypoxic insults were well defined by blood data; critical PO2 values were lower than previously assumed. This model is proving to be a useful, controlled method by which mechanisms of cerebral hypoxia tolerance may be studied in vivo.  相似文献   

11.
Oxygen tension (PO2) was measured with microelectrodes within the retina of anesthetized cats during normoxia and hypoxemia (i.e., systemic hypoxia), and photoreceptor oxygen consumption was determined by fitting PO2 measurements to a model of steady-state oxygen diffusion and consumption. Choroidal PO2 fell linearly during hypoxemia, about 0.64 mmHg/mmHg decrease in arterial PO2 (PaO2). The choroidal circulation provided approximately 91% of the photoreceptors' oxygen supply under dark-adapted conditions during both normoxia and hypoxemia. In light adaptation the choroid supplied all of the oxygen during normoxia, but at PaO2's less than 60 mmHg the retinal circulation supplied approximately 10% of the oxygen. In the dark-adapted retina the decrease in choroidal PO2 caused a large decrease in photoreceptor oxygen consumption, from approximately 5.1 ml O2/100 g.min during normoxia to 2.6 ml O2/100 g.min at a PaO2 of 50 mmHg. When the retina was adapted to a rod saturating background, normoxic oxygen consumption was approximately 33% of the dark-adapted value, and hypoxemia caused almost no change in oxygen consumption. This difference in metabolic effects of hypoxemia in light and dark explains why the standing potential of the eye and retinal extracellular potassium concentration were previously found to be more affected by hypoxemia in darkness. Frequency histograms of intraretinal PO2 were used to characterize the oxygenation of the vascularized inner half of the retina, where the oxygen distribution is heterogeneous and simple diffusion models cannot be used. Inner retinal PO2 during normoxia was relatively low: 18 +/- 12 mmHg (mean and SD; n = 8,328 values from 36 profiles) in dark adaptation, and significantly lower, 13 +/- 6 mmHg (n = 4,349 values from 19 profiles) in light adaptation. Even in the dark-adapted retina, 30% of the values were less than 10 mmHg. The mean PO2 in the inner (i.e., proximal) half of the retina was well regulated during hypoxemia. In dark adaptation it was significantly reduced only at PaO2's less than 45 mmHg, and it was reduced less at these PaO2's in light adaptation.  相似文献   

12.
We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.  相似文献   

13.
Small catheters (ca. 3 mm diam at tip) were wedged in subsegmental bronchi in anesthetized coatimundi (Nasua nasua) during spontaneous breathing. Mixed expired gases of a group of lobules were sampled continuously without contamination from neighboring units, and local tidal volume, frequency, carbon dioxide production, and oxygen consumption were measured, as well as mixed venous PO2 and PCO2. Local ventilation-perfusion ratio, alveolar PO2, PCO2, and blood flow were calculated. There was a 22% reduction (range 15-38) in local perfusion (as percent of flow at PAO2 100 mmHg) per 10 mmHg fall in local alveolar oxygen tension over the PAO2 range 150-36 mmHg. Local hypercapnia had little effect on local flow. Local tidal volume (ca. 1% of total tidal volume) was unaffected by changes in alveolar gas tensions. The contribution of vasoconstriction or vasodilatation, as a negative feedback system, to the stability of local PAO2 was greatest close to the physiologic range (65-85 mmHg) falloderate efficiency.  相似文献   

14.
O2 concentration, PO2, PCO2, pH, osmolarity, lactate (LA), and hemoglobin (Hb) concentrations in deep forearm venous blood were repeatedly measured during submaximal exercise of forearm muscles. Concentrations of arterial blood gases were determined at rest and during exercise. Experiments were conducted under normoxia and hypobaric hypoxia (PB = 465 Torr). In arterial blood, data obtained during exercise were the same as those obtained during rest under either normoxia or hypoxia. In venous muscular blood, PO2 and O2 concentration were lower at rest and during exercise in hypoxia. The muscular arteriovenous O2 difference during exercise in hypoxia was increased by no more than 10% compared with normoxia, which implied that muscular blood flow during exercise also increased by the same percentage, if we assume that exercise O2 consumption was not affected by hypoxia. Despite increased [LA], the magnitude of changes in PCO2 and pH in hypoxia were smaller than in normoxia during exercise and recovery; this finding is probably due to the increased blood buffer value induced by the greater amount of reduced Hb in hypoxia. Hence all the changes occurring in hypoxia showed that local metabolism was less affected than we expected from the decrease in arterial PO2. The rise in [Hb] that occurred during exercise was lower in hypoxia. Possible underlying mechanisms of the [Hb] rise during exercise are discussed.  相似文献   

15.
Braun, R. D., Lanzen, J. L., Turnage, J. A., Rosner, G. and Dewhirst, M. W. Effects of the Interaction between Carbogen and Nicotinamide on R3230 Ac Tumor Blood Flow in Fischer 344 Rats. Radiat. Res. 155, 724-733 (2001). The purpose of this study was to determine whether there are interactions between carbogen breathing and various doses of nicotinamide at the level of the tumor arteriole that might contribute to the improvement in tumor blood flow and pO(2) that is often seen with this combination treatment. R3230 adenocarcinomas were implanted and grown to 4-5 mm in dorsal skin flap window chambers in F344 rats. Saline or 65, 200 or 500 mg/kg nicotinamide was injected i.p. while the rat breathed air through a face mask. After 20 min, either the breathing gas was switched to carbogen for 60 min or the animal remained on air. Measured end points included diameter of tumor arterioles, tumor perfusion, mean arterial blood pressure, and heart rate. None of the measured parameters were affected by injection of saline or nicotinamide, except at the highest nicotinamide dose (500 mg/kg). Mean arterial blood pressure showed a median decrease of 25% when 500 mg/kg nicotinamide was given. Diameter of tumor arterioles decreased significantly from 5-15 min after 500 mg/kg nicotinamide was given but was back to baseline by 20 min. Blood flow decreased significantly 5-20 min after administration of 500 mg/kg nicotinamide compared to the baseline prior to injection. Carbogen breathing resulted in a small increase in mean arterial blood pressure in all groups. There was a transient decrease in the diameter of tumor arterioles and blood flow during the first 5 min of carbogen breathing that was statistically significant in several groups. In the group injected with 500 mg/kg nicotinamide, the diameter of tumor arterioles increased by about 10% during the first 25 min of carbogen breathing, and blood flow increased by a median of 75% over the level prior to carbogen breathing up to 40 min after carbogen breathing. The increase in flow in this group was most likely caused by the concomitant arteriolar vasodilation. Thus there was direct evidence for an interaction between carbogen breathing and nicotinamide, but only at the dose of 500 mg/kg nicotinamide. Since this dose yields plasma levels of nicotinamide that are higher than can be tolerated clinically, it is uncertain whether these changes in arteriolar diameter and blood flow would occur in human tumors.  相似文献   

16.
Transcutaneous PO2 was measured using a transcutaneous PO2 electrode heated to 45 degrees C on the forearm of 19 healthy volunteers. Cutaneous blood flow (CBF) was estimated indirectly from the heating power of the electrode (HP) and with an 8-MHz bidirectional ultrasonic probe by Doppler shift in a fingertip at 45 degrees C (DF). Blood flow was regulated by an upper arm cuff. Mean transcutaneous PO2 during air respiration was 86.0 +/- 6.2 Torr, and the correlation to arterial PO2 (Pao2) was 0.96 at normal blood flow. The arterial inflow was intermittently reduced in 10-15% stages of effective perfusion pressure (Peff). There was a hyperbolic decrease in PO2 when CBF was restricted in stages. A linear dependence between Peff, HP, and DF was found, which means that there is no autoregulation in the capillary bed at 45 degrees C. Transcutaneous PO2 can be also taken as an indication of CBF. The transcutaneous index, transcutaneous PO2/Pao2, is helpful for estimating local O2 availability.  相似文献   

17.
Although the administration of 100% O2 alone or combined with umbilical cord occlusion induces continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990a), the individual contribution of O2 and cord occlusion to the response have not been determined. We hypothesized that if O2 is an important factor in the induction of continuous breathing, administration of O2 low enough (10%) to bring fetal arterial PO2 to about 20 torr while the fetus is breathing continuously should reverse these changes. Thus we subjected 12 chronically instrumented fetal sheep to 10% O2 for 10 minutes after the establishment of continuous breathing by O2 (4 fetuses; 137 +/- 1 days) or by O2 plus umbilical cord occlusion (8 fetuses; 134 +/- 1 days). Arterial PO2 decreased from about 250 torr to 20 torr during 10% O2. This induced a significant decrease in breathing output (EMGdi x f) related primarily to a decrease in frequency (f). In 3/5 experiments in 4 fetuses, with O2 alone, apnoea developed within 4 +/- 0.6 min; in 12/13 experiments in 8 fetuses, with added cord occlusion it developed at 5 +/- 0.6 min. With the decrease in PaO2, electrocortical activity (ECoG) switched from low to high-voltage within 6 minutes in 5/5 experiments (O2 alone) and in 11/13 (O2 plus cord occlusion). The findings suggest that umbilical cord occlusion alone is not sufficient to maintain breathing continuously and an increased PaO2 is needed. We speculate that in the fetus there is a vital link between PaO2, breathing and ECoG with low PaO2 inhibiting and high PaO2 favouring breathing and arousal.  相似文献   

18.
We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.  相似文献   

19.

Purpose

There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV).

Methods

10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity.

Results

As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher.

Conclusion

A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo.  相似文献   

20.
To examine the relationship between fetal O2 consumption and fetal breathing movements, we measured O2 consumption, umbilical blood flow, and cardiovascular and blood gas data before, during, and after fetal breathing movements in conscious chronically catheterized fetal lambs. During fetal breathing movements, O2 consumption increased by 30% from a control value of 7.7 +/- 0.7 (SE) ml X min-1 X kg-1. Umbilical blood flow was 210 +/- 21 ml X min-1 X kg-1 before fetal breathing movements; in 9 of 16 samples it increased by 52 +/- 12 ml X min-1 X kg-1, while in the other 7 it decreased by 23 +/- 9 ml X min-1 X kg-1. Umbilical arterial and venous O2 partial pressures and pH fell during fetal breathing movements, and the fall was greater when umbilical blood flow was decreased. Partial CO2 pressure rose in both vessels, and again the increase was greatest when umbilical blood flow fell during fetal breathing movements. Also associated with a fall in umbilical blood flow was the transition from low-amplitude irregular to large-amplitude regular fetal breathing movements. It is concluded that fetal breathing movements increase fetal O2 demands and are associated with a transient deterioration in fetal blood gas status, which is most severe during large-amplitude breathing movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号