首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Morphological heterogeneity has not been documented for cultured endothelial cells isolated from the microvascular bed of any organ. As the corpus luteum depends on a rich microvascularization, endothelial cells were dislodged from developing corpora lutea by mechanical dissection followed either by collagenase digestion or by no digestion. Cell separation was carried out by Percoll density centrifugation. Although the yield of intact cells was higher with collagenase treatment than without, successful endothelial cell cultures were only established when cells remained untreated. Viewed by light microscopy after an average lag phase of 10 days, five different phenotypes of endothelial cells were found under similar simple culture conditions: isomorphic epithelioid, polymorphic epithelioid, spindle-shaped, round, and phase-dense phenotypes. Monolayers appeared within 2–4 weeks. After an additional period of 2–4 weeks, tubular forms with a specific pattern were noted for types 1–3, the so-called pseudotubular forms for type 4, and none for type 5. Cell types differed in their cytochemical and immunocytochemical responses. Examined by SEM, type 1 displayed a more conspicuous surface anatomy than type 2. Types 3–5 demonstrated striking cell processes that were characteristic of each type. Tubular forms of types 1 and 2 showed cell borders and a marked increase in surface specializations, whereas tubular forms of type 3 lacked detectable cell borders in the absence of a striking surface anatomy. Pseudotubular forms of type 4 developed no particular spatial organization. Thus, for the first time, morphological evidence is provided that different endothelial cell types are obtained from diverse segments of the microvascular bed.  相似文献   

2.
Previously, five phenotypically different, stable types of microvascular endothelial cells (MVE) were isolated from the bovine corpus and cultured successfully. We found that three out of these five types of MVE express the neural cell adhesion molecule (NCAM). As shown by immunocytochemistry, weak NCAM immunoreactivity occurred mainly in the perinuclear area of cell type 1. Monolayers of types 2 and 5 revealed heavy NCAM immunoreactivity, which was localized predominantly at the lateral cell surface outlining the contact zones of adjacent cells. In contrast, cell types 3 and 4 were not NCAM immunoreactive. Western blot analyses substantiated these results: While cell type 1 showed a weak immunoreactive band, cell types 2 and 5 displayed strong NCAM-immunoreactive bands of a molecular weight of approximately 140 kDa (NCAM-140), which was absent in cell types 3 and 4. These results reveal for the first time that NCAM can be expressed by cultured MVE and may serve in mediating endothelial cell contacts. Since luteal cells also express NCAM-140, this adhesion molecule could in addition be involved in the interactions of luteal cells with MVE.  相似文献   

3.
Summary Five different types of cultured microvessel endothelial cells defined by use of light microscopy and scanning electron microscopy in a preceding study were investigated by transmission electron microscopy. Type-1 cells displayed a deep invagination of the cell membrane or a single cilium. Granules of low electron density were abundant. A perinuclear ring of intermediate filaments occurred. Cultures of type-2 cells were subdivided into phenotype A, reminiscent of cell-type 1, and into phenotype B, assumed to be vascular smooth muscle cells. Many highly electron-dense granules appeared in late postconfluent cultures of both phenotypes. Cell-type 3 was conspicuous because of a large intracytoplasmic vacuole. Lysosomes with curvilinear bodies were found in cell-types 3 and 4. Both cell types developed a peripheral regular network of microfilaments. Cell-type 5 showed vesiculation of the rough endoplasmic reticulum, lipid droplets and a peripheral felt-like belt of microfilaments. Tubular forms seen in late postconfluent cultures of cell-types 1 to 3 displayed a core of extracellular matrix. Pseudotubular forms of cell-type 4 contained apoptotic bodies. Thus, as seen at the ultrastructural level, different features are maintained by cultured microvessel endothelial cells, suggesting that they have different inherent properties.  相似文献   

4.
The interphase microtubule cytoskeleton of five different microvessel endothelial cell cultures, recently established from bovine corpus luteum, was analysed using anti-tubulin immunofluorescence. An antibody against acetylated microtubules detected four cell types each of which possessed a single cilia. The length of the cilia were up to 10 microns for cell types 1 and 2. Ciliary stubs had a length of up to 0.37 microns in cell types 4 and 5. Cilia were missing in cell type 3. Long and short cilia were located in the perinuclear region from where cytoplasmic microtubules radiated. Cell type 3 displayed straight microtubules rather than the wavy path seen in the other cell types. The amount of tyrosinated microtubules visualized by a specific antibody was consistently higher than that of posttranslationally acetylated microtubules. The latter were more apparent in cell types 4 and 5 than in the other cell types. We conclude: Differences in the cytoplasmic microtubule inventory of each microvessel endothelial cell type points at individual functions maintained in culture.  相似文献   

5.
6.
The cytosolic supernatant of bovine corpus luteum contains two proteins which bind progesterone specifically. Bovine luteal cytosol was fractionated on hydroxylapatite and the peaks of protein obtained subjected to equilibrium dialysis against progesterone. Progesterone-binding activities (Ka approx. 10(6) 1/mol) was eluted at 40 mM (Binding Protein 1) and 100 mM phosphate (Binding Protein 2). They sedimented differently (3.95 and 4.65, respectively) on sucrose gradients. In contrast to Binding Protein 1, Binding Protein 2 bound R5020 better than progesterone on sucrose gradients. Purification of the binding activity eluted by 40 mM phosphate from the hydroxylapatite column showed that it resided in a single protein (molecular weight 65,000 daltons). The function of these proteins is presently unknown, but they may participate in the biosynthesis and/or secretion of progesterone from bovine luteal cells.  相似文献   

7.
8.
9.
Early embryonic mortality accounts for a substantial portionof reproductive failure in agriculturally important livestock,including the dairy cow. The maintenance of early pregnancyrequires a fully functional corpus luteum (CL) that is not susceptibleto regression following fertilization, yet the cellular mechanismsof luteal regression are not clearly understood. Immune-cellaccumulation within the CL at the time of regression is a well-documentedphenomenon in a variety of species. In the dairy cow, immune-cellaccumulation precedes luteal regression by several days andcoincides with an increase in expression of the chemokine monocytechemoattractant protein 1 (CCL2), suggesting that immune-mediatedevents promote tissue destruction. Recent studies indicate thatendothelial cells comprising the CL are a primary source ofCCL2 secretion. Moreover, although uterine-derived prostaglandinF2 (PGF) initiates luteal regression in the cow, PGF does notdirectly provoke CCL2 secretion by luteal endothelial cells.Instead, PGF-induced luteal regression is thought to requirecooperative interaction among immune cells, endothelial cells,and steroidogenic cells of the CL to further promote CCL2 secretion,enhance immune-cell recruitment, and eliminate luteal tissue.This brief review focuses on putative interactions between immunecells and endothelial cells derived from the bovine CL thatresult in enhanced CCL2 expression and the elaboration of otherinflammatory mediators (for example, cytokines), which perpetuateluteal regression. Fundamental knowledge of immune-endocrineinteractions within the reproductive system of cows has relevanceto other CL-bearing mammals, including humans and endangeredanimals, particularly in the development of methods to controland/or improve fertility. Thus, it is a timely topic for thissymposium concerning ecological immunology and public health.  相似文献   

10.
Hypoxia promotes luteal cell death in bovine corpus luteum   总被引:1,自引:0,他引:1  
Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.  相似文献   

11.
12.
There is sufficient evidence to prove that tumor necrosis factor alpha (TNFalpha) modulates bovine corpus luteum (CL) function. Our previous study demonstrated that functional TNFalpha receptors are present on luteal cells in bovine CL throughout the estrous cycle. The purpose of the present study was to identify the presence of functional TNFalpha receptors on the microvascular endothelial cells derived from developing bovine CL. TNFalpha receptors were analyzed by a radioreceptor assay using (125)I-labeled TNFalpha on two types of cultured endothelial cells. One has a cobblestone appearance (CS cells), and the other has a tube-like structure (TS cells). (125)I-Labeled TNFalpha binding was maximal after incubation for 30 h at 37 degrees C, and the specificity of binding was confirmed. A Scatchard analysis showed the presence of two binding sites (high- and low-affinity) for TNFalpha receptors on both CS and TS cells. The dissociation constant (K(d)) values and concentrations of the high-affinity binding sites for TNF receptors were similar for CS and TS cells. However, K(d) values and concentrations of the low-affinity binding sites in CS cells were significantly higher than those in TS cells (P < 0.05 or lower). The expression of TNF receptor type 1 (TNF-RI) mRNA was determined in both cell types. Furthermore, TNFalpha significantly stimulated prostaglandin E(2) and endothelin-1 secretion by both CS and TS cells (P < 0.05 or lower). These results indicate the presence of two types of TNF receptors and the expression of TNF-RI mRNA in the endothelial cells derived from bovine CL, and suggest that TNFalpha plays two or more roles in regulating the secretory function of the endothelial cells.  相似文献   

13.
Specific monoclonal antibodies to granulosa and thecal cell surface antigens were produced and used to determine the contributions of theca and granulosa cells to the bovine corpus luteum (CL). Binding of each antibody was examined on collagenase-dispersed luteal cells from 18 cycling and 14 pregnant heifers by indirect immunofluorescence. The percent binding of the large luteal cells to granulosa antibody (GrAb) declined (P less than 0.01) as the age of the CL advanced: 77 +/- 6, 47.5 +/- 3, and 30 +/- 2 for Days 4-6, 10-12 and 16-18, respectively. Further reduction in binding of GrAb to large cells occurred between 50 and 100 days of pregnancy and no labeling was seen thereafter. Fourteen percent of the small luteal cells were bound by GrAb on Days 4-6 of the cycle, and none were labeled during subsequent stages. In contrast, when thecal antibody (TAb) was used, the proportions of large cells that were labeled increased (P less than 0.01) between Days 4-6 (10 +/- 1.3%) and 10-12 (46 +/- 3%). The percentage of large cells bound by TAb then remained unchanged until midpregnancy, declined as pregnancy advanced, and disappeared during late gestation. A majority of small luteal cells were bound by TAb throughout the estrous cycle: 70 +/- 4%, 69 +/- 3% and 58 +/- 6% at Days 4-6, 10-12, 16-18, respectively. Labeling of small cells by TAb occurred throughout pregnancy but declined (P less than 0.05) as gestation advanced. These studies suggest that the large cells of the early cyclic CL are derived from granulosa cells, while most of the small cells are of thecal origin. Small cells develop into large cells as the age of the CL increases. Granulosa-derived cells disappear during early pregnancy, while cells of thecal origin persist throughout pregnancy.  相似文献   

14.
15.
Binding of follicle stimulating hormone (FSH) to a crude membrane fraction of bovine corpus luteum (CL) has been detected. This binding meets the usual criteria for a receptor based on specificity, time course of reaction and association constant (Ka = 8.5 x 10(10)M(-1)). Physiological studies with CL removed from heifers at specific times after estrus indicate that day-6 CL had the highest FSH binding. However, a correlation with physiological function was not obvious since some functional mid-cycle CL were high in progesterone and luteinizing hormone (LH) receptor but had nondetectable FSH receptor. Conversely, some late-cycle CL had low progesterone and LH receptor but significant quantities of FSH receptor.  相似文献   

16.
Biosynthesis of retinal in bovine corpus luteum   总被引:1,自引:0,他引:1  
Bovine corpus luteum tissue was sliced and incubated with beta-[15,15'-(3)H]carotene. The conversion of radioactive beta-carotene into radioactive retinal was substantiated utilizing column chromatography, thin-layer chromatography, high-speed liquid chromatography, and a derivative formation. Lowering of the incubation temperature to 20 degrees C or boiling the tissue eliminated the conversion of beta-carotene to retinal. In addition, other carotenoids and possible oxidation products of beta-carotene in the corpus luteum were investigated. Our results indicate that the bovine corpus luteum possesses the ability to synthesize retinal in situ, which may play a role in reproductive functions.  相似文献   

17.
18.
19.
Pate JL 《Theriogenology》1996,45(7):1381-1397
There is a growing body of evidence that intercellular communication is important in the regulation of luteal function. Although the nature of the interactions between small and large luteal cells are not yet clear, it seems likely that they do exist. Many of the substances to which luteal cells respond, such as prostaglandins, growth factors, oxytocin and progesterone, are produced locally. These substances may act as paracrine factors to modulate the response of luteal cells to hormonal signals. Endothelial cells also produce factors that can modify steroidogenesis, and luteal cell-stimulation of endothelial cell proliferation is necessary for the extensive angiogenesis that occurs during luteinization Finally, bidirectional intercellular communication likely occurs between luteal cells and resident immune cells. Immune cells produce cytokines that can modify progesterone and prostaglandin synthesis by luteal cells. Cytokines may also have direct cytotoxic effects on luteal cells, and dead cells are then phagocytized by resident macrophages. Also, factors secreted by luteal cells can serve as chemoattractants for immune cells, and can enhance or suppress immune cell functions. There is little doubt that intercellular communication within the corpus luteum is very complex. One must remember, however, that nearly all evidence collected thus far is based on in vitro studies. Eventually, technology will allow for study of these interactions in vivo, and may lead to new methods for control of luteal function.  相似文献   

20.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号