首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein tyrosine phosphorylation, modulated by the rate of both protein tyrosine kinase and protein tyrosine phosphatase activities, is critical for cellular signal transduction cascades. We report that endothelin-1 stimulation of rabbit platelets resulted in a dose- and time-dependent tyrosine phosphorylation of four groups of proteins in the molecular mass ranges of 50, 60, 70–100 and 100–200 kDa and that one of these corresponds to focal adhesion kinase. This effect is also related to the approximately 60% decrease in protein tyrosine phosphatase activity. Moreover, this inhibited activity was less sensitive to orthovanadate. In the presence of forskolin that increases the cAMP level a dose-dependent inhibition of the endothelin-stimulated tyrosine phosphorylation of different protein substrates and a correlation with an increase in the protein tyrosine phosphatase activity (11.6-fold compared to control) have been found. Further studies by immunoblotting of immunoprecipitated soluble fraction with anti-protein tyrosine phosphatase-1C from endothelin-stimulated platelets have demonstrated that the tyrosine phosphorylation of platelet protein tyrosine phosphatase-1C is correlated with the decrease in its phosphatase activity. As a consequence, modulation and regulation by endothelin-1 in rabbit platelets can be proposed through a cAMP-dependent pathway and a tyrosine phosphorylation process that may affect some relevant proteins such as focal adhesion kinase.  相似文献   

2.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

3.
Mutations in the gene encoding the amyloid precursor protein (APP) or the enzymes that process APP are correlated with familial Alzheimer disease. Alzheimer disease is also associated with insulin resistance (type 2 diabetes). In our recently published study,1 we obtained genetic evidence that the extracellular fragment of APL-1, the C. elegans ortholog of human APP, may act as a signaling molecule to modulate insulin and nuclear hormone pathways in C. elegans development. In addition, independent of insulin and nuclear hormone signaling, high levels of the extracellular fragment of APL-1 (sAPL-1) leads to a temperature-sensitive embryonic lethality, which is dependent on activity of a predicted receptor protein tyrosine phosphatase (MOA-1/R155.2). Furthermore, this embryonic lethality is enhanced by knockdown of a predicted prion-like protein (pqn-29). The precise molecular mechanisms underlying these processes remain to be determined. Here, we present hypothetical models as to how sAPL-1 signaling influences metabolic and developmental pathways. Together, with previous findings in mammals that the extracellular domain of mammalian APP (sAPP) binds to a death-receptor,2 our findings support the model that sAPP signaling affects critical biological processes.  相似文献   

4.
5.
In this work, we report the cloning, heterologous expression, and characterization of two novel astacin proteases from the chelicerate Limulus polyphemus (horseshoe crab), designated as LAST (Limulus astacin) and LAST_MAM (Limulus astacin containing a MAM domain), respectively. The expression pattern showed ubiquitous occurrence of LAST_MAM, while LAST was predominantly restricted to the eyes and brain, indicating a function in the nervous system. Both enzymes contain the characteristic metzincin-type zinc-binding region and Met turn. While LAST is made up only of the typical prodomain and astacin-like protease domain, LAST_MAM contains an additional MAM (meprin A5 protein tyrosine phosphatase μ) domain, which so far only has been found in few astacins such as the vertebrate meprin Hydra and squid enzymes, and in a number of other extracellular proteins such as A5 protein and tyrosine phosphatase μ. These gave rise to the designation MAM for this protein module. MAM domains have been shown to be responsible for protein oligomerization in meprin proteases and tyrosine phosphatase μ. Since the horseshoe crab has kept its body plan for almost half a billion years, it is therefore a privileged organism for the study of protease evolution. In this context, we could show by phylogenetic analysis that this protease is not related to the other MAM-domain-containing astacins indicating different evolutionary origins of these proteins. Moreover, we clearly demonstrated the divergent evolvement of the MAM module itself, and not only with regard to proteases. However, there are some unique functional features that are not shared by other members of this protein family. For example, LAST_MAM is the only astacin protease known so far that is active in its zymogen form, indicating that the presence of the N-terminal propeptide does not prevent proteolytic activity.  相似文献   

6.
7.
Mice lacking protein tyrosine phosphatase alpha (PTPalpha) exhibited defects in NMDA receptor (NMDAR)-associated processes such as learning and memory, hippocampal neuron migration, and CA1 hippocampal long-term potentiation (LTP). In vivo molecular effectors linking PTPalpha and the NMDAR have not been reported. Thus the involvement of PTPalpha as an upstream regulator of NMDAR tyrosine phosphorylation was investigated in synaptosomes of wild-type and PTPalpha-null mice. Tyrosine phosphorylation of the NMDAR NR2A and NR2B subunits was reduced upon PTPalpha ablation, indicating a positive effect of this phosphatase on NMDAR phosphorylation via intermediate molecules. The NMDAR is a substrate of src family tyrosine kinases, and reduced activity of src, fyn, yes and lck, but not lyn, was apparent in the absence of PTPalpha. In addition, autophosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase linked to NMDAR signaling, was also reduced in PTPalpha-deficient synaptosomes. Altered protein tyrosine phosphorylation was not accompanied by altered expression of the NMDAR or the above tyrosine kinases at any stage of PTPalpha-null mouse development examined. In a human embryonic kidney (HEK) 293 cell expression system, PTPalpha enhanced fyn-mediated NR2A and NR2B tyrosine phosphorylation by several-fold. Together, these findings provide evidence that aberrant NMDAR-associated functions in PTPalpha-null mice are due to impaired NMDAR tyrosine phosphorylation resulting from the reduced activity of probably more than one of the src family kinases src, fyn, yes and lck. Defective NMDAR activity in these mice may also be linked to the loss of PTPalpha as an upstream regulator of Pyk2.  相似文献   

8.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.  相似文献   

9.
Glycosyl phosphatidylinositol (GPI)-linked receptors and receptor protein tyrosine phosphatases (RPTPs), both play key roles in nervous system development, although the molecular mechanisms are largely unknown. Despite lacking a transmembrane domain, GPI receptors can recruit intracellular src family tyrosine kinases to receptor complexes. Few ligands for the extracellular regions of RPTPs are known, relegating most to the status of orphan receptors. We demonstrate that PTPalpha, an RPTP that dephosphorylates and activates src family kinases, forms a novel membrane-spanning complex with the neuronal GPI-anchored receptor contactin. PTPalpha and contactin associate in a lateral (cis) complex mediated through the extracellular region of PTPalpha. This complex is stable to isolation from brain lysates or transfected cells through immunoprecipitation and to antibody-induced coclustering of PTPalpha and contactin within cells. This is the first demonstration of a receptor PTP in a cis configuration with another cell surface receptor, suggesting an additional mode for regulation of a PTP. The transmembrane and catalytic nature of PTPalpha indicate that it likely forms the transducing element of the complex, and we postulate that the role of contactin is to assemble a phosphorylation-competent system at the cell surface, conferring a dynamic signal transduction capability to the recognition element.  相似文献   

10.
Enzymological studies of Src protein tyrosine kinase have been hindered by the lack of a suitable bacterial expression system. Poor expression of active Src appears to be due to toxicity associated with its kinase activity. To overcome this problem, we fused Src to a protein tyrosine phosphatase with an affinity tag and an appropriate thrombin cleavage site. Upon affinity purification of the fusion protein, Src was released by thrombin digestion and further purified by FPLC. This strategy has been used to produce several Src mutants that display catalytic and regulatory properties similar to those from eukaryotic expression systems. Characterization of the Src mutants confirmed that inactivation of Src by Csk through tail tyrosine phosphorylation required the Src SH3 domain.  相似文献   

11.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

12.
Phosphosignaling through pSer/pThr/pTyr is emerging as a common signaling mechanism in prokaryotes. The human pathogen Staphylococcus aureus produces two low-molecular-weight protein tyrosine phosphatases (PTPs), PtpA and PtpB, with unknown functions. To provide the structural context for understanding PtpA function and substrate recognition, establish PtpA's structural relations within the PTP family, and provide a framework for the design of specific inhibitors, we solved the crystal structure of PtpA at 1 Å resolution. While PtpA adopts the common, conserved PTP fold and shows close overall similarity to eukaryotic PTPs, several features in the active site and surface organization are unique and can be explored to design selective inhibitors. A peptide bound in the active site mimics a phosphotyrosine substrate, affords insight into substrate recognition, and provides a testable substrate prediction. Genetic deletion of ptpA or ptpB does not affect in vitro growth or cell wall integrity, raising the possibility that PtpA and PtpB have specialized functions during infection.  相似文献   

13.
ABSTRACT. The protist Prorocentrum lima , a primary producer of the tumour promoter okadaic acid, is a member of the dinoflagellate class of marine microorganisms. Herein, we have identified and characterized a protein tyrosine kinase (designated PLIK 1A) in P. lima that autophosphorylates almost exclusively on tyrosine residues. PLIK 1A was shown to have an approximate molecular mass of 38 kDa by SDS-PAGE and a native molecular mass within the range of 47–55 kDa by Superdex-75 gel filtration. Phosphoamino acid analysis of autophosphorylated PLIK 1A revealed the presence of phosphotyrosine and autophosphorylated PLJK 1A reacted with monoclonal anti-phosphotyrosine antibodies in a Western immunoblot. In addition, two protein tyrosine phosphatases were identified in P. lima that had apparent molecular masses within the ranges of 150–168 kDa and 73–82 kDa as determined by Superdex-200 gel filtration. These P. lima phosphatases, termed PLPTP-I and PLPTP-II, efficiently dephosphorylated tyrosine phosphorylated myelin basic protein. owever, only PLPTP-I was capable of dephosphorylating the tyrosine phosphorylated substrate angiotensin. Both PLPTP-I and PLPTP-II were able to dephosphorylate tyrosine autophosphorylated PLIK 1A. These data provide the first evidence for reversible tyrosine protein phosphorylation in P. lima by protein tyrosine kinases and phosphatases  相似文献   

14.
The integrative nuclear FGFR1 signaling (INFS) pathway functions in association with cellular growth, differentiation, and regulation of gene expression, and is activated by diverse extracellular signals. Here we show that stimulation of angiotensin II (AII) receptors, depolarization, or activation protein kinase C (PKC) or adenylate cyclase all lead to nuclear accumulation of fibroblast growth factor 2 (FGF-2) and FGFR1, association of FGFR1 with splicing factor-rich domains, and activation of the tyrosine hydroxylase (TH) gene promoter in bovine adrenal medullary cells (BAMC). The up-regulation of endogenous TH protein or a transfected TH promoter-luciferase construct by AII, veratridine, or PMA (but not by forskolin) is abolished by transfection with a dominant negative FGFR1TK-mutant which localizes to the nucleus and plasma membrane, but not by extracellularly acting FGFR1 antagonists suramin and inositolhexakisphosphate (IP6). Mechanism of TH gene activation by FGF-2 and FGFR1 was further investigated in BAMC and human TE671 cultures. TH promoter was activated by co-transfected HMW FGF-2 (which is exclusively nuclear) but not by cytoplasmic FGF-1 or extracellular FGFs. Promoter transactivation by HMWFGF-2 was accompanied by an up-regulation of FGFR1 specifically in the cell nucleus and was prevented FGFR1(TK-) but not by IP6 or suramin. The TH promoter was also transactivated by co-transfected wild-type FGFR1, which localizes to both to the nucleus and the plasma membrane, and by an exclusively nuclear, soluble FGFR1(SP-/NLS) mutant with an inserted nuclear localization signal. Activation of the TH promoter by nuclear FGFR1 and FGF-2 was mediated through the cAMP-responsive element (CRE) and was associated with induction of CREB- and CBP/P-300-containing CRE complexes. We propose a new model for gene regulation in which nuclear FGFR1 acts as a mediator of CRE transactivation by AII, cell depolarization, and PKC.  相似文献   

15.
EphA2 receptor tyrosine kinase and the human cytoplasmic protein tyrosine phosphatase (HCPTP) are overexpressed in a number of epithelial cancers. Overexpressed EphA2 in these cancers shows a significant decrease in phosphotyrosine content which results in suppression of receptor signaling and endocytosis and an increase in metastatic potential. The decreased phosphotyrosine content of EphA2 has been associated with decreased contact with its ligand, ephrin A1 and dephosphorylation by HCPTP. Potential specificity of the two HCPTP variants for tyrosines on EphA2 has not been investigated. We have used a mass spectrometry assay to measure relative rates of dephosphorylation for the two HCPTP variants at phosphotyrosine sites associated with control of the EphA2 kinase activity or interaction with downstream targets. Our results suggest that although both variants dephosphorylate the EphA2 receptor, the rate and specificity of dephosphorylation for specific tyrosines are different for HCPTP-A and HCPTP-B. The SAM domain tyrosine Y960 which has been implicated in downstream PI3K signaling is dephosphorylated exclusively by HCPTP-B. The activation loop tyrosine (Y772) which directly controls kinase activity is dephosphorylated about six times faster by HCPTP-A. In contrast, the juxtamembrane tyrosines (Y575, Y588 and Y594) which are implicated in both control of kinase activity and downstream signaling are dephosphorylated by both variants with similar rates. This difference in preference for dephosphorylation sites on EphA2 not only illuminates the different roles of the two variants of the phosphatase in EphA2 signaling, but also explains why both HCPTP variants are highly conserved in most mammals.  相似文献   

16.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

17.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

18.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

19.
Inhibitor 2 is a heat-stable protein that complexes with the catalytic subunit of type-1 protein phosphatase. The reversible phosphorylation of Thr 72 of the inhibitor in this complex has been shown to regulate phosphatase activity. Here we show that inhibitor 2 can also be phosphorylated on tyrosine residues. Inhibitor 2 was 32P-labeled by the insulin receptor kinase in vitro, in the presence of polylysine. Phosphorylation of inhibitor 2 was accompanied by decreased electrophoretic mobility. Dephosphorylation of inhibitor 2 by tyrosine phosphatase 1B, restored normal electrophoretic mobility. Phosphotyrosine in inhibitor 2 was detected by immunoblotting with antiphosphotyrosine antibodies and phosphoamino acid analysis. In addition, following tryptic digestion, one predominant phosphopeptide was recovered at the anode. The ability of inhibitor 2 to inhibit type-1 phosphatase activity was diminished with increasing phosphorylation up to a stoichiometry of 1 mole phosphate incorporated/mole of inhibitor 2, where inhibitory activity was completely lost. These data demonstrate that inhibitor 2 can be phosphorylated on tyrosine residues by the insulin receptor kinase, resulting in a molecule with decreased ability to inhibit type-1 phosphatase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号