首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously shown that the alpha chain of human fibrinogen interacts directly with ADP-activated human platelets [Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., & Doolittle, R. F. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2068]. Now, we report that platelet receptor recognition domains are localized on two CNBr fragments of the human fibrinogen alpha chain. They encompass residues 92-147 and 518-584, which inhibit 125I-fibrinogen binding to ADP-stimulated platelets. The inhibitory CNBr fragment alpha 92-147 contains the RGD sequence at residues 95-97. Synthetic peptides encompassing this sequence were inhibitory while peptide 99-113 lacking the RGD sequence was inactive. The synthetic peptide RGDF, corresponding to residues alpha 95-98, inhibited the binding of 125I-fibrinogen to ADP-treated platelets (IC50 = 2 microM). However, the peptides containing sequence RGDF, with residues preceding Arg95 or following Phe98, were less inhibitory. It appears that the sequence alpha 95-98 constitutes a platelet receptor recognition domain which is constrained by flanking residues. The second inhibitory CNBr fragment, alpha 518-584, also contains the sequence RGD at positions 572-574. Synthetic peptides overlapping this sequence were inhibitory, while peptides lacking the sequence RGDS were not reactive. Thus, another platelet reactive site on the alpha chain encompasses residues 572-575 containing sequence RGDS. In conclusion, the platelet receptor recognition domains on the human fibrinogen alpha chain in the amino-terminal and in the carboxy-terminal zones contain the ubiquitous cell recognition sequence RGD shared with other known adhesive proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cellular immune responses can elicit local deposition of fibrin at the site of immunologic reactions, as well as the formation of intravascular fibrin in disseminated reactions. The subsequent physiologic proteolysis of fibrinogen and fibrin by plasmin results in small peptides that suppress lymphocyte functions in vitro and in the immune response in vivo. The intramolecular origin of lymphocyte suppressive activity and the proteolytic events responsible for the release of active peptides have been analyzed. Plasmic peptides from the isolated B beta and gamma constituent chains of fibrinogen did not inhibit mitogen-driven responses of human peripheral blood mononuclear cells. In contrast, plasmic digests of the A alpha chain, but not the intact A alpha chain were suppressive. Advanced plasmic digests of fibrinogen and the A alpha chain were suppressive at similar concentrations, suggesting that biological activity is derived predominantly from the A alpha chain. Limited plasmic digests of fibrinogen were fractionated to yield a heat-precipitable 250,000 dalton fragment X and heat-soluble proteolytic products containing fragments derived from the carboxyl-terminal region of the A alpha chain including a 42,000 dalton major A alpha chain derivative. Neither fragment X nor derivatives produced by its additional plasmic proteolysis were suppressive. In contrast, the heat-soluble fraction from limited plasmic cleavage was suppressive, and this activity was enhanced 10-fold by additional plasmic cleavage of this fraction. The isolated 42,000 dalton A alpha chain fragment was devoid of activity, but plasmic digestion of this derivative generated peptides of less than 8000 daltons that inhibited mitogen-stimulated thymidine uptake by lymphocytes. Two synthetic peptides corresponding to A alpha 220-230 and B beta 43-47, peptides with known vasoactive activities, suppressed lymphocyte thymidine uptake at very high concentrations. Based on their maximal yield from plasmic digests of fibrinogen, these two peptides would account for only 1% of the immunosuppressive activity of fibrinogen derivatives. In summary, the results indicate that the suppressive activity of fibrinogen is predominantly derived from the 42,000 dalton carboxyl terminal region of the A alpha chain of the molecule and is not attributable to the known vasoactive peptides. Initial proteolytic release of this region from the core of fibrinogen does not result in suppressive activity, but additional cleavage releases small peptides with the lymphocyte inhibitory function.  相似文献   

3.
Monoclonal antibodies have been generated against a cross-link-containing derivative of alpha polymer (alpha XLCNBr), isolated following CNBr digestion of fibrin [Sobel, J. H., Ehrlich, P. H., Birken, S., Saffran, A. J., & Canfield, R. E. (1983) Biochemistry (preceding paper in this issue)]. One cloned cell line (F-102) was chosen for characterization based on its apparent specificity for the A alpha-chain region A alpha 518-584 (CNBr X). A second line (F-103) was selected because of its anti-A alpha 241-476 (CNBr VIII) properties. These two regions of the A alpha chain have previously been implicated as major contributors to the cross-linking process that leads to alpha-polymer formation. Radioimmunoassays have been developed, employing the immunoglobulins produced by clones F-102 and F-103. These assays have been applied, in conjunction with high-performance liquid chromatography purified tryptic and chymotryptic derivatives of CNBr VIII and CNBr X, to localize the respective determinants involved in antibody binding. In each case, virtually full immunoreactivity was exhibited by both the CNBr fragment and a single tryptic or chymotryptic peptide originating from it. These findings indicate that sequence-specific, rather than conformational, determinants were operative in the generation of antibodies F-102 and F-103. The epitope recognized by F-102 was localized to the region of A alpha 540-554, while the F-103 binding site resided within A alpha 259-276. When these radioimmunoassays were applied to study the relative immunoreactivity exhibited by a variety of fibrinogen derivatives, the results obtained support earlier suggestions that the COOH-terminal portion of the A alpha chain contains regions of random conformation.  相似文献   

4.
Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.  相似文献   

5.
The accessibility of the gamma 95-264 sequence to specific antibody probes in the native fibrinogen molecule and its plasmic cleavage fragments have been investigated. The gamma 95-264 segment was generated by cyanogen bromide cleavage of the gamma chain and isolated by gel filtration and ion exchange chromatography. Rabbit antisera to this peptide and to gamma chain recognized at least five antigenic loci uniformly distributed throughout this segment. In primary binding assays, antibodies to gamma 95-264 bound gamma 95-264, free gamma chain, and fibrinogen fragment D, but not native fibrinogen. Also, gamma 95-264 was bound by antibodies to gamma chain and fibrinogen fragment D, but not by antibodies generated to native fibrinogen. Thus, the gamma 95-264 sequence was not accessible to antibody in the native structure. In competitive equilibrium radioimmunoassays, neither native fibrinogen nor highly soluble fibrinogen fraction I-9 inhibited the binding of gamma 95-264 by its antiserum or anti-gamma chain. With plasmic cleavage, however, the gamma 95-264 sequence became accessible to antibody and the series of fragments D greater than Y greater than D:E = X describes the relative reactivity of the gamma chain sequence in fibrinogen degradation products. Differential expression of gamma 95-264 antigenic loci was also observed with D fragments differing in molecular weight. Plasmic cleavage of cross-linked and noncross-linked fibrin generated D fragments which did not express gamma 95-264 as well as fibrinogen D derivatives, indicating that the D domains of fibrinogen and fibrin are immunochemically distinguishable. These findings indicate that the central segment of the gamma chain is inaccessible to antibody in native fibrinogen, but that proper surface orientation is achieved upon plasmic degradation.  相似文献   

6.
Binding of the adhesive ligand fibrinogen and the monoclonal antibody PAC1 to platelet glycoprotein (GP) IIb-IIIa is dependent on cell activation and inhibited by Arg-Gly-Asp (RGD)-containing peptides. Previously, we identified a sequence in a hypervariable region of PAC1 (mu-CDR3) that mimics the activity of the antibody. Here we examine whether monoclonal antibodies to this idiotypic determinant in PAC1 can mimic GP IIb-IIIa by binding to fibrinogen. Mice were immunized with a peptide derived from the mu-CDR3 of PAC1. Four antibodies were obtained that recognized fibrinogen as well as a recombinant form of the variable region of PAC1. However, they did not bind to other RGD-containing proteins, including von Willebrand factor, fibronectin, and vitronectin. Several studies suggested that these anti-PAC1 peptide antibodies were specific for GP IIb-IIIa recognition sites in fibrinogen. Three such sites have been proposed: two RGD-containing regions in the A alpha chain, and the COOH terminus of the gamma chain (gamma 400-411). Two of the antibodies inhibited fibrinogen binding to activated platelets, and all four antibodies bound to the fibrinogen A alpha chain on immunoblots. Antibody binding to immobilized fibrinogen was partially inhibited by monoclonal antibodies specific for the two A alpha chain RGD regions. However, the anti-PAC1 peptide antibodies also bound to plasmin-derived fibrinogen fragments X and D100, which contain gamma 400-411 but lack one or both A alpha RGD regions. This binding was inhibited by an antibody specific for gamma 400-411. When fragment D100 was converted to D80, which lacks gamma 400-411, antibody binding was reduced significantly (p less than 0.01). Electron microscopy of fibrinogen-antibody complexes confirmed that each antibody could bind to sites on the A alpha and gamma chains. These studies demonstrate that certain anti-PAC1 peptide antibodies mimic GP IIb-IIIa by binding to platelet recognition sites in fibrinogen. Furthermore, they suggest that the gamma 400-411 region of fibrinogen may exist in a conformation similar to that of an A alpha RGD region of the molecule.  相似文献   

7.
Immunochemical studies of equine fibrinogen were conducted to characterize the structural basis for the immunologic cross-reactivity observed between human and equine A alpha chains when employing an antiserum to the 26K, human cyanogen bromide (CNBr) fragment, A alpha 241-476 (CNBr VIII). A 38K, equine CNBr fragment that reacts with this antiserum was isolated from CNBr-digested equine fibrinogen by Sephadex G-100 gel filtration. It was further purified by sequential hydrophobic chromatography on phenyl-Sepharose CL-4B, followed by reversed-phased (C-8) high-performance liquid chromatography (HPLC). NH2-Terminal analysis of the purified fragment, designated EqA alpha CNBr, identified one major sequence whose first three residues, E-L-E, were identical with those of human CNBr VIII. Tryptic and staphylococcal protease digests of the equine fragment were resolved by reversed-phase HPLC (C-4, C-18), and the separated components were characterized by amino acid analysis and automated Edman degradation. A total of 34 tryptic and 20 staph protease peptides yielded sequence information that permitted the alignment of 271 equine residues with residues A alpha 241-517 from the COOH-terminal two-thirds of the human A alpha chain so that 63% of the possible matches were identical. Other features of interest included (1) an amino acid substitution in which the methionine residue at A alpha 476 in the human A alpha chain was replaced by a valine residue, thus accounting, in part, for the larger EqA alpha CNBr fragment obtained from the equine molecule, and (2) a region of striking homology in which 36 successive residues, corresponding to A alpha 428-464 in the human A alpha chain, were identical in both species. These findings, together with available structural data for the COOH-terminal portion of the rat and bovine A alpha chains, indicate that the region corresponding to (human) A alpha 240-517 represents a conserved portion of the fibrinogen molecule. This may, in turn, explain the difficulties encountered when trying to raise monoclonal antibodies to cross-linking regions that are contained within the COOH-terminal two-thirds of the human A alpha chain.  相似文献   

8.
A cross-link-containing fragment (alpha XLCNBr), derived from the alpha-polymer component of human fibrin following CNBr digestion, has been isolated and characterized. NH2-terminal sequence studies of three alpha XLCNBr derivatives, each prepared by a different method, indicate that the A alpha-chain regions comprised of residues 241-476 (CNBr VIII) and 518-584 (CNBr X) are the major constituents of the cross-linked fragments examined. Evidence for at least two additional sequences suggests that A alpha 208-235 (CNBr V) and A alpha 585-610 (CNBr XI) may have auxiliary roles in alpha-polymer formation. When alpha XLCNBr was used as an immunogen for the production of murine hybridoma cell lines, two groups of antibodies were obtained. The majority of supernatants from primary hybridoma cultures did not discriminate between fibrinogen and alpha XLCNBr and appeared to contain antibodies directed against determinants within either CNBr VIII or CNBr X [see Ehrlich, P. H., Sobel, J. H., Moustafa, Z. A., & Canfield, R. E. (1983) Biochemistry (following paper in this issue)]. Several supernatants from primary hybridoma cultures, however, did exhibit significant binding toward the alpha-polymer derivative in the absence of demonstrable immunoreactivity toward either highly purified fibrinogen or its A alpha-chain peptides, CNBr VIII and CNBr X.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The beta chain of human fibrinogen contains 461 amino acid residues, 15 of which are methionines. The calculated molecular weight, independent of a single carbohydrate cluster, is 52 230. In this regard, we have isolated and characterized all 16 cyanogen bromide fragments. In one case (CNI), we have concentrated on a disputed portion of a previously reported fragment. The arrangement of the cyanogen bromide peptides was deduced by the use of overlap fragments obtained from the tryptic digestion of modified and unmodified beta-chains and from digestions with staphylococcal protease, as well as by considerations involving the plasmic digestion products of fibrinogen. In one case two adjacent fragments were aligned by homology with the corresponding segments of the gamma chain. The homology of the beta chain with the gamma chain is especially strong over the course of the carboxy-terminal two-thirds of the sequence. Neither of these chains appears to be homologous with the alpha chain in these regions. With a few minor exceptions, the sequence reported in this article is in agreement with data reported by other groups in Stockholm and Munich.  相似文献   

10.
Calcium limits the plasmic proteolysis of fibrinogen fragment D by binding to a specific site on the carboxy-terminal segment of the D gamma chain. Employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis to visualize plasmic fragments, Sr2+, Ba2+, and Mn2+ were found to have an equivalent capacity to limit the degradation of fibrinogen fragment D (Mr 94,000). Mg2+, Fe2+, Co2+, and Zn2+ did not comparably limit the digestion of fragment D. Equilibrium dialysis demonstrated that Ba2+ competitively inhibited Ca2+ binding to fibrinogen, suggesting that the ions occupied the Ca2+ binding site of fibrinogen and thereby limited the plasmic digestion of fragment D. The results suggest that Ca2+, Sr2+, Ba2+, and Mn2+ limit plasmin digestion of fragment D by interacting with a Ca2+ binding site in the D domain of the fibrinogen molecule.  相似文献   

11.
Mac-1 (CD11b/CD18), a leukocyte-restricted integrin receptor, mediates neutrophil/monocyte adhesion to vascular endothelium and phagocytosis of complement-opsonized particles. Recent studies have shown that Mac-1 also functions as a receptor for fibrinogen in a reaction linked to fibrin deposition on the monocyte surface. In this study, we have used extended proteolytic digestion of fibrinogen to identify the region of this molecule that interacts with Mac-1. We found that an Mr approximately 30,000 plasmic fragment D of fibrinogen (D30) produced dose-dependent inhibition (IC50 = 1.6 microM) of the interaction of intact 125I-fibrinogen with stimulated neutrophils and monocytes. 125I-D30 bound saturably to these cells with specific association of 136,200 +/- 15,000 molecules/cell in a reaction inhibited by OKM1 and M1/70, monoclonal antibodies specific for the alpha subunit of Mac-1. Direct microsequence analysis and an epitope-mapped monoclonal antibody showed that D30 lacks the COOH-terminal dodecapeptide of the gamma chain as well as the Arg-Gly-Asp sequences in the A alpha chain. We conclude that fibrinogen interacts with the leukocyte integrin Mac-1 through a novel recognition site that is not shared with other known integrins that function as fibrinogen receptors.  相似文献   

12.
Thrombomodulin acts as a linear competitive inhibitor of thrombin with respect to the substrate fibrinogen. In the present study the effect of thrombomodulin on the activity of thrombin with fragments of the A alpha and B beta chain of fibrinogen has been examined. The cleavage of fibrinopeptide A from the N-terminal disulphide knot, fragment 1-44 and fragment 1-51 of the A alpha chain was inhibited by thrombomodulin. The average value for the inhibition constant obtained with these substrates was 0.83 +/- 0.09 nM, which was in good agreement with the values obtained previously for the inhibition of thrombin by thrombomodulin with native fibrinogen as the substrate [Hofsteenge, J., Taguchi, H. & Stone, S. R. (1986) Biochem. J. 237, 243-251]. In contrast, the cleavage of fibrinopeptide A from fragment 1-23 and fragment 1-29 of the A alpha chain was not affected by thrombomodulin. Although the cleavage of the B beta chain in the intact fibrinogen molecule was inhibited by thrombomodulin [Hofsteenge, J., Taguchi, H. & Stone, S. R. (1986) Biochem. J. 237, 243-251], the release of fibrinopeptide B from the N-terminal disulphide knot and the N-terminal 118-residue fragment of the B beta chain was not inhibited by thrombomodulin. In addition, we determined the second-order rate constants of cleavage of these substrates using human thrombin. Fragments of the A alpha chain whose cleavage was inhibited by thrombomodulin were found to have values for kcat/Km that were within one order of magnitude of that for the native fibrinogen, whereas those for A alpha chain fragments whose cleavage was not inhibited by thrombomodulin were found to be more than two orders of magnitudes lower. From these results we conclude that only a relatively small portion of the A alpha chain of the fibrinogen molecule is responsible for the specific binding to thrombin that is affected by thrombomodulin. Moreover, residues 30-44 of the A alpha chain play an important role in this thrombin-fibrinogen interaction.  相似文献   

13.
Human fibrinogen exposed to protease III from Crotalus atrox venom is cleaved near the NH2 terminus of the B beta chain yielding a species of Mr 325,000 (Fg325) with impaired thrombin clottability. The derivative was compared with intact fibrinogen in a number of ways to determine whether the functional defect resulted from a conformational change or from the loss of a polymerization site. NH2-terminal amino acid sequencing of isolated A alpha, B beta, and gamma chains showed that Fg325 contained intact A alpha and gamma chains, but differed from fibrinogen by the absence of the first 42 residues of the B beta chain. Fibrinopeptide A was present and was cleaved at the same rate in both fibrinogen and Fg325. The rate and extent of A alpha and gamma cross-linking by factor XIIIa was also indistinguishable. In contrast, the thrombin-catalyzed coagulation of Fg325 was 46% less in extent and 180-fold slower than observed for intact fibrinogen. A conformational comparison of Fg325 and fibrinogen was made using immunochemical and spectroscopic approaches. Antisera specific for different regions of the fibrinogen molecule were used to characterize the epitopes in Fg325. The only significant differences were found in the NH2-terminal region of the B beta chain, probed with antiserum to B beta 1-118. The conformational similarity of Fg325 and fibrinogen was confirmed by the identity of both near and far UV CD spectra of the two proteins. Structural, functional, and immunochemical results imply that cleavage of 42 NH2-terminal residues from the B beta chain is not accompanied by a measurable conformational change. The residues of this B beta chain segment, which are evidently located on the surface of the molecule, in conjunction with the NH2-terminal part of the A alpha chain appear to play an important role in the expression of a fibrin polymerization site.  相似文献   

14.
Murine monoclonal antibodies 9C3, 7B1, and 9E9 have been obtained using native human fibrinogen as the antigen. The antibodies reacted with the epitopes in the COOH-terminal domain of the A alpha chain. Fragmentation of the A alpha chain with plasmin, and, as in the case of the 9E9 epitope, with V8 protease, followed by isolation of the smallest reacting peptides, allowed the localization of the epitopes for 9C3, 7B1, and 9E9 to the amino acid sequences of alpha 240-268, alpha 425-440, and alpha 541-574, respectively. All three monoclonal antibodies strongly inhibited the rate of fibrin polymer assembly from monomers, both in the purified system and in the human plasma. The mechanism of this strong inhibition implied a rapid formation of fibrin protofibrils, followed by capping with IgG molecules of protofibrils containing approximately ten monomers. These observations demonstrated that certain regions in the COOH terminus of the alpha chain may play an important role in the assembly of a fibrin clot, presumably being involved in lateral aggregation of protofibrils.  相似文献   

15.
To identify epitopes recognized by alloreactive CTL we have examined H-2Kb-specific CTL for their recognition of synthetic peptides with sequences derived from the native Kb class I molecule. Consecutive nested peptides spanning the immunogenic alpha 1 and alpha 2 domains of Kb were tested for their capacity to inhibit CTL clones in their recognition of cells expressing the native Kb molecule. Inhibition by these peptides was found to be an extremely rare event. One peptide (Kb.111-122) did inhibit recognition by one particular CTL clone, clone 13. Upon further investigation it was observed that clone 13 also recognized peptide Kb.111-122 when presented in the context of the syngeneic MHC molecule, Kd. Considering that residues 111 to 122 are located at the base of the antigen groove, and clone 13 is able to recognize Kb.111-122 when presented by syngeneic target cells, we suggest that inhibition of this CTL clone may be due to MHC restricted, self-presentation of peptide rather than to direct binding of free peptide to the TCR. Taken together, these results suggest inhibition of allospecific CTL by MHC peptides is a rare event at least for Kb recognition. Furthermore, they demonstrate the need for caution when interpreting inhibition by peptide as evidence for recognition by the TCR of the corresponding region on the native molecule.  相似文献   

16.
In order to assess the significance of the aminoterminal residues of the B beta chain in expression of polymerization sites of the E domain, we have prepared polyclonal antiserum against a synthetic peptide corresponding to beta 43-47 of human fibrinogen. Affinity purified immunoglobulin IgG and Fab prepared from these antibodies reacted strongly and specifically with the synthetic pentapeptide and intact fibrinogen molecule. This specificity was determined both by radioimmunoassay and Western blot analysis of fibrinogen and its plasmic fragments and described in our previous paper (Cierniewski et al., 1986, Biochim. Biophys. Acta, 884, 594-597). Immunochemically purified anti beta 43-47 antibodies and their Fab fragments were strong inhibitors of the fibrin monomer polymerization. Our results imply that amino acid sequence beta 43-47 recognized by these antibodies may be in a close vicinity to the contact sites of the E domain.  相似文献   

17.
Platelet membrane GPIIbIIIa is a member of the family receptors named integrins that recognize RGD sequences in their ligands. GPIIbIIIa interacts with at least three different adhesive ligands: fibrinogen, fibronectin, and von Willebrand factor. These interactions are inhibited by RGD-containing peptides and by peptides corresponding to a sequence unique to fibrinogen in the COOH-terminal domain of its gamma chain (HLGGAKQAGDV). Two RGD sequences are present in fibrinogen A alpha chain: an RGDS sequence at A alpha 572-575, and an RGDF sequence at A alpha 95-98. Polyclonal antibodies raised against the RGDF sequence and the gamma COOH-terminal domain both reacted specifically with fibrinogen in solid phase enzyme-linked immunosorbent assays and immunoprecipitated the protein in solution. The Fab fragments prepared from these antibodies inhibited fibrinogen-platelet interaction and aggregation. These results demonstrate that these two sequences are both accessible within the fibrinogen molecule and are both implicated in ligand binding and cell-cell interaction. In addition, by further examining the interaction of the gamma chain peptide with platelets, it was found that RGDF and the gamma peptide produced a similar dose-dependent inhibition of the binding of the labeled gamma peptide to ADP-stimulated platelets. These results provide evidence that the RGDF sequence present at the A alpha 95-98 constitutes with the gamma 401-411 sequence two recognition sites interacting with the same site or with mutually exclusive sites on GPIIbIIIa.  相似文献   

18.
Localization of a fibrin polymerization site   总被引:6,自引:0,他引:6  
The formation of a fibrin clot is initiated after the proteolytic cleavage of fibrinogen by thrombin. The enzyme removes fibrinopeptides A and B and generates fibrin monomer which spontaneously polymerizes. Polymerization appears to occur though the interaction of complementary binding sites on the NH2-terminal and COOH-terminal (Fragment D) regions of the molecule. A peptide has been isolated from the gamma chain remnant of fibrinogen Fragment D1 which has the ability to bind to the NH2-terminal region of fibrinogen as well as to inhibit fibrin monomer polymerization. The peptide reduces the maximum rate and extent of the polymerization of thrombin or batroxobin fibrin monomer and increases the lag time. The D1 peptide does not interact with disulfide knot, fibrinogen, or Fragment D1, but it binds to thrombin-treated disulfide knot with a Kd of 1.45 X 10(-6) M at approximately two binding sites per molecule of disulfide knot. Fibrin monomer formed either by thrombin or batroxobin binds approximately two molecules of D1 peptide per molecule of fibrin monomer, indicating that the complementary site is revealed by the loss of fibrinopeptide A. The NH2-terminal sequence (Thr-Arg-Trp) and COOH-terminal sequence (Ala-Gly-Asp-Val) of the D1 peptide were determined. Therefore the gamma 373-410 region of fibrinogen contains a polymerization site which is complementary to the thrombin-activated site on the NH2-terminal region of fibrinogen.  相似文献   

19.
To identify the functional region(s) associated with induction of gamma interferon on the staphylococcal enterotoxin A molecule, native staphylococcal enterotoxin A molecules and 12 various synthetic peptides corresponding to different regions of entire staphylococcal enterotoxin A were compared to induce gamma interferon production in murine spleen cells. The native staphylococcal enterotoxin A molecule induced gamma interferon production, whereas all of the 12 synthetic peptides did not. Pre-treatment of the murine spleen cells with synthetic peptide A-9 (corresponding to amino acid residues 161-180) significantly inhibited the staphylococcal enterotoxin A-induced gamma interferon production, whereas those with other synthetic peptides did not. When native staphylococcal enterotoxin A was pre-treated with either anti-staphylococcal enterotoxin A serum or anti-peptide sera, anti-staphylococcal enterotoxin A serum and antisera to peptides A-1 (1-20), A-7 (121-140), A-8 (141-160), A-9 (161-180) and A-10 (181-200) inhibited the staphylococcal enterotoxin A-induced gamma interferon production. From these findings, the amino acid residues 161-180 on the staphylococcal enterotoxin A molecule may be an essential region for murine gamma interferon production. Furthermore, the neutralizing epitopes may be also located on regions of amino acid residues 1-20, 121-140, 141-160 and 181-200 on the staphylococcal enterotoxin A molecule.  相似文献   

20.
Out of 29 disulfide bonds in human fibrinogen, 7 were cleaved during limited reduction under nondenaturing conditions in calcium-free buffer: 2 A alpha 442Cys-A alpha 472Cys and 2 gamma 326Cys-gamma 339Cys intrachain disulfide bonds in the carboxy-terminal ends of the A alpha- and gamma-chains and the symmetrical disulfide bonds at gamma 8Cys, gamma 9Cys, and A alpha 28Cys. We studied the loss of thrombin clottability that followed limited reduction and the increase in the susceptibility of the fibrinogen A alpha 19-A alpha 20 bond to hydrolysis by thrombin. Using differential scanning calorimetry, we show that the extent of unfolding and denaturation of specific domains following limited reduction is small. Heat absorption peaks corresponding to the melting of the major regions of compact structure give high calorimetric enthalpies, as in untreated nonreduced fibrinogen, indicating that substantial regions of native structure are still present in partially reduced fibrinogen. Thrombin releases fibrinopeptide A at an identical rate as in nonreduced fibrinogen while fibrinopeptide B release is slower. Sedimentation velocity studies show that thrombin treatment leads to complex formation; however, gelation does not occur. Amino-terminal analysis indicates that the second thrombin cleavage in the A alpha-chain at A alpha 19-A alpha 20 takes place only after fibrinopeptide A release. Thus, the loss of clottability appears to result from perturbation of carboxy-terminal polymerization sites, probably a consequence of gamma 326Cys-gamma 339Cys intrachain disulfide bond cleavage. The thrombin-treated partially reduced fibrinogen remains soluble in buffered saline and fully expresses at least one epitope, B beta 15-21, unique to fibrin. Furthermore, this nonclottable form accelerates the tissue plasminogen activator dependent conversion of plasminogen to plasmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号