首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete mitochondrial DNA (mtDNA) control region was sequenced for 71 individuals from five species of the rodent genus Clethrionomys both to understand patterns of variation and to explore the existence of previously described domains and other elements. Among species, the control region ranged from 942 to 971 bp in length. Our data were compatible with the proposal of three domains (extended terminal associated sequences [ETAS], central, conserved sequence blocks [CSB]) within the control region. The most conserved region in the control region was the central domain (12% of nucleotide positions variable), whereas in the ETAS and CSB domains, 22% and 40% of nucleotide positions were variable, respectively. Tandem repeats were encountered only in the ETAS domain of Clethrionomys rufocanus. This tandem repeat found in C. rufocanus was 24 bp in length and was located at the 5' end of the control region. Only two of the proposed CSB and ETAS elements appeared to be supported by our data; however, a "CSB1-like" element was also documented in the ETAS domain.  相似文献   

2.
The complete mitochondrial DNA (mtDNA) control region was cloned and sequenced in the musk shrew, Suncus murinus, Insectivora. The general aspect was similar to that found in other mammals. We have found in two locations of this region the presence of arrays of tandem repeats like those in other shrew species. One array was located in the left domain containing the termination-associated sequences (TAS) and the length of a copy was 77 bp. The other repeats were situated upstream from the recognition site for the end of H-strand replication in the right domain and were 20 bp long. The left halves of the control region containing the former repeats were sequenced and compared in several laboratory lines and wild animals from different localities, variations in copy number of repeated sequences were found both among individuals and within an individual. A comparative study of repeated sequences provides useful indication for the origin and evolution of tandem repeated sequences. Strand slippage and mispairing during replication of mtDNA with concerted manner is currently regarded as a dominant theory to account molecular mechanism for tandemly repeated sequences, and the pattern of sequence and length variation in our study supports this theory. Our results, however, suggest that the evolution of the repeated sequences containing the TAS in the musk shrew might go through the process of two steps; at the first step one complete repeated and several incomplete repeated sequences had reproduced in common ancestor of the shrew, and the second stage step-up of complete repeated sequences occurred with concerted evolution after differentiation into continental and insular groups.  相似文献   

3.
Sequence evolution in and around the mitochondrial control region in birds   总被引:16,自引:0,他引:16  
By cloning and sequencing 3.4 kilobases of snow goose mtDNA we found that the ND5 gene is followed by the genes for cytochrome b, tRNAThr, tRNAPro, ND6, tRNAGlu, the control region, tRNAPhe, and srRNA. This order is identical to that of chicken, quail, and duck mtDNA but differs from that of mammals and a frog (Xenopus). The mean extent of difference due to base substitution between goose and chicken is generally closer to the same comparison between rat and mouse but less than that between human and cow. For one of the nine regions compared (tRNAGlu), the bird differences appear to be anomalous, possibly implicating altered functional constraints. Within the control region, several short sequences common to mammals are also conserved in the birds. Comparison of the goose control region with that of quail and chicken suggests that a sequence element with similarity to CSB-1 duplicated once prior to the divergence of goose and chicken and again on the lineage leading to chicken. Between goose (or duck) and chicken there are four times more transversions at the third positions of fourfold-degenerate codons in mitochondrial than in nuclear genes.Abbreviations CSB conserved sequence block - cytb cytochrome b - ND NADH dehydrogenase - srRNA small-subunit ribosomal RNA Deceased July 21, 1991 Correspondence to: T.W. Quinn at the University of Denver  相似文献   

4.
5.
Intraspecific sequence variation in the D-loop region of mtDNA in white sturgeon (Acipenser transmontanus), a relict North American fish species, was examined in 27 individuals from populations of the Columbia and Fraser rivers. Thirty-three varied nucleotide positions were present in a 462-nucleotide D-loop sequence, amplified using the polymerase chain reaction. Bootstrapped neighbor-joining and maximum- parsimony trees of sequences from 19 haplotypes suggest that the two populations have recently diverged. This is consistent with the hypothesis that the Columbia River, a Pleistocene refugium habitat, was the source of founders for the Fraser River after the last glacial recession. On the basis of a divergence time of 10-12 thousand years ago, the estimated substitution rate of the white sturgeon D-loop region is 1.1-1.3 x 10(-7) nucleotides/site/year, which is comparable to rates for hypervariable sequences in the human D-loop region. Furthermore, the ratio of mean percent nucleotide differences in the D- loop (2.27%) to that in whole mtDNA (0.54%, as estimated from restriction-enzyme data) is 4.3, which is similar to the fourfold-to- fivefold-higher substitution rate estimated for the human D-loop. The high nucleotide substitution rate of the hypervariable region indicates that the vertebrate D-loop has potential as a genetic marker in molecular population studies.   相似文献   

6.
The control region of mitochondrial DNA has been widely studied in various human populations. This paper reports sequence data for hypervariable segments 1 and 2 of the control region from a population from southern Tuscany (Italy). The results confirm the high variability of the control region, with 43 different haplotypes in 49 individuals sampled. The comparison of this set of data with other European populations allows the reconstruction of the population history of Tuscany. Independent approaches, such as the estimation of haplotype diversity, mean pairwise differences, genetic distances and discriminant analysis, place the Tuscan sample in an intermediate position between sequences from culturally or geographically isolated regions of Europe (Sardinia, the Basque Country, Britain) and those from the Middle East. In spite of the remarkable genetic homogeneity in Europe, a degree of variability is shown by local European populations and homogeneity increases with the relative isolation of the population. The pattern of mitochondrial variation in Tuscany indicates the persistence of an ancient European component subsequently enriched by migrational waves, possibly from the Middle East. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Common guillemot eggs were collected and analysed in two years on Skomer Island, Wales, to investigate the effects of environmental conditons during the pre-laying period on egg formation and composition. Pre-laying attendance at breeding colonies indicated more favourable environmental conditions in 1987 than in 1986. The size of eggs did not differ between years, but eggs were laid earlier in 1987 and the time taken for yolk deposition was also shorter in 1987. Two distinct effects of environmental conditons on yolk formation were indicated: first, on the timing of initiation of yolk deposition; and secondly, on the duration of the yolk deposition period. Egg composition also differed significantly between years with a higher proportion of albumen and a higher proportion of lipid and non-lipid solids in yolks in 1987. These results are discussed with respect to environmental conditions and the constraints on egg production.  相似文献   

8.
The complete mitochondrial DNA (mtDNA) control region was analyzed from five species of the subfamily Caprinae; Naemorhedus caudatus, N. goral, Capra hircus, Capricornis swinhoei, and Capricornis crispus. Among these species, the control region ranged from 1,096 to 1,212 bp in length. Our results were compatible with the scheme of three domains (ETAS, Central, and CSB) within the control region. A + T < G + C was observed in all the domains. In the Korean gorals, of the 31 variable sites in the whole control region resulting in 15 haplotypes, 27 variable sites were in the ETAS domain. We found two to three tandem repeat in all five species examined in this study, three in N. caudatus and N. goral, two in Capra hircus and C. crispus, and one in C. swinhoei, respectively. All of these repeat units include two short sections of mirror symmetry (TACAT and ATGTA). Short mirror symmetries were well-resolved among five different species, although left domain has high substitution rates. By Kimura’s two parameter method, the genetic distances between the genera Naemorhedus and Capricornis were calculated and divergence time between Naemorhedus and Capricornis may be nearly 2Myr.  相似文献   

9.
10.
11.
中国大陆梅花鹿mtDNA控制区序列变异及种群遗传结构分析   总被引:17,自引:0,他引:17  
测定了37只中国大陆梅花鹿(Cervus nippon)不同种群mtDNA控制区5′端351 bp的序列,共发现23个变异位点,定义了5种单元型。分子变异分析表明,中国大陆梅花鹿出现了显著的种群分化(Φm=0.45,Fst=0.60,P<0.001),支持把分布于东北、华南和四川的梅花鹿种群归入各自独立的管理单元。中国大陆、日本南部和日本北部之间无共享单元型,且有25个鉴别位点。最小跨度网络图(Minimum spannlng network,MSN)和基于最大似然法和邻接法的系统发生分析均把单元型聚类为对应于中国大陆、日本南部和日本北部的三个单系,其中中国大陆和日本南部梅花鹿有相对较近的亲缘关系,支持日本梅花鹿的祖先通过至少两个大陆桥从亚洲迁移到日本的观点。  相似文献   

12.
The hypervariable segment I of the control region of the mtDNA (positions16024-16383) was amplified from hair roots by PCR and sequenced in 45unrelated individuals from Anatolia (Asian Turkey). Forty differentsequences were found, defined by 56 variable positions, of which only oneinvolves a transversion. The neighbor-joining tree of Kimura's distancematrix for all sequences shows four main clusters. Cluster D was found tobe the most statistically robust of the four, and all the sequences in itshared a mutation that is present only in European and West Asianpopulations. The variability in cluster D could have originated between37,000 and 107,000 years ago. No branch is unexpectedly long, denoting theabsence of sequences that diverged much before the others. The pairwisedifference distribution is bell-shaped, in accordance with a populationexpansion occurring roughly 35,000 to 100,000 years ago. When compared toother Caucasoid populations through the pairwise difference distribution,there is a pattern from the Middle East (older expansion) to the variousEuropean populations, with Turkey in an intermediate position; when Turkishsequences are compared through a neighbor-joining tree on a geneticdistance matrix of populations, this position is again evidenced. Althoughthere is a very low level of genetic divergence among Caucasoid populationsas shown by mtDNA control region sequences, a geographic pattern of geneticvariation emerges, denoting a stepping-stone position of Turkey between theMiddle East and Europe, which is in agreement with the hypothesis of areplacement of Neanderthals by modern humans, which could be related to theUpper Paleolithic cultural expansion.  相似文献   

13.
Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco ( Coregonus zenithicus ). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens of C. zenithicus and the related species C. artedi , C. hoyi , C. kiyi , and C. clupeaformis . DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.  相似文献   

14.
以Anderson标准序列作为对照,用GeneDOC软件确定42个安徽汉族无关个体的mtDNA高变区I序列在线粒体基因组中的位置,通过序列比对软件clustalX分析安徽汉族群体mt DNA高变区I序列多态性,共检测到38种单倍型和57个变异位点.在mtDNA高变区I序列中14个bp的高变结构域中,安徽汉人16183位点变异率高达38%,在16187位点的变异率为4.8%.同时发现,安徽汉人与成都汉人在mtDNA高变区I 16183和16189位点的变异率接近,明显高于广东汉人.  相似文献   

15.
Mitochondrial DNA control region structure and variation were determined in the five species of the genus Panthera. Comparative analyses revealed two hypervariable segments, a central conserved region, and the occurrence of size and sequence heteroplasmy. As observed in the domestic cat, but not commonly seen in other animals, two repetitive sequence arrays (RS-2 with an 80-bp motif and RS-3 with a 6-10-bp motif) were identified. The 3' ends of RS-2 and RS-3 were highly conserved among species, suggesting that these motifs have different functional constraints. Control region sequences provided improved phylogenetic resolution grouping the sister taxa lion (Panthera leo) and leopard (Panthera pardus), with the jaguar (Panthera onca).  相似文献   

16.
17.
We sequenced part of the mitochondrial control region and the cytochrome b gene in 72 specimens from 32 gull species (Laridae, Larini) and 2 outgroup representatives (terns: Laridae, Sternini). Our control region segment spanned the conserved central domain II and the usually hypervariable 3' domain III. Apart from some heteroplasmy at the 3' end of the control region, domain III was not more variable than domain II or the cytochrome b gene. Furthermore, variation in the tempo of evolution of domain III was apparent between phyletic species groups. The lack of variation of the gull control region could not be explained by an increase in the proportion of conserved sequences in these birds, and the gull control region showed an organization similar to those of other avian control regions studied to date. A novel invariant direct repeat was identified in domain II of gulls, and in domain III, two to three inverted, sometimes imperfect, repeats are able to form a significantly stable stem-and-loop structure. These putative secondary structures have not been reported before, and a comparison between species groups showed that they are more stable in the group with the more conserved control region. The unusually slow rate of evolution of control region part III of the gulls could thus be partly explained by the existence of secondary structures in domain III of these species.  相似文献   

18.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

19.
20.
We sequenced the complete mitochondrial control regions of 11 red knots (Calidris canutus). The control region is 1168 bp in length and is flanked by tRNA glutamate (glu) and the gene ND6 at its 5' end and tRNA phenylalanine (phe) and the gene 12S on its 3' end. The sequence possesses conserved sequence blocks F, E, D, C, CSB-1, and the bird similarity box (BSB), as expected for a mitochondrial copy. Flanking tRNA regions show correct secondary structure, and a relative rate test indicated no significant difference between substitution rates in the sequence we obtained versus the known mitochondrial sequence of turnstones (Charadriiformes: Scolopacidae). These characteristics indicate that the sequence is mitochondrial in origin. To confirm this, we sequenced the control region of a single individual using both purified mitochondrial DNA and genomic DNA. The sequences were identical using both methods. The sequence and methods presented in this paper may now serve as a reference for future studies using knot and other avian control regions. Furthermore, the discovery of five variable sites in 11 knots towards the 3' end of the control region, and the variability of this region in contrast to the more conserved central domain in the alignment between knots and other Charadriiformes, highlights the importance of this area as a source of variation for future studies in knots and other birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号